首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A temperature-jump technique for single nodes of Ranvier has been developed using a pulsed laser system. The temperature perturbation was accomplished by firing the laser beam obtained from a neodymium rod through the solution surrounding a single node. The temperature step was achieved within 1 msec using the laser in the normal mode of operation. During the voltage-clamped steady-state current a temperature jump from 4°C increased the current to a new steady-state value within the time course of the T-jump. This finding suggests that the maximum potassium permeability PK has a rapid relaxation time and that the steady-state value of n (the value of potassium permeability divided by its maximum value) is relatively independent of temperature. T-jumps applied during the voltage-clamped sodium currents showed that the sodium permeability changed with a relaxation time that was also shorter than the duration of the normal mode laser output. T-jumps observed during a hyperpolarization or at the resting potential showed no detectable conductance change. When a T-jump immediately preceded a voltage clamp pulse the technique was then used to investigate the effect of changes in the steady-state temperature on the ionic conductances. It was found that the magnitude of the change in membrane current due to a T-clamp was directly related to the level of cathodal polarization.  相似文献   

2.
The potential, Vt, at which a brief test depolarization first elicited movement was determined using two-microelectrode point voltage clamp. We expected that inactivation of excitation-contraction coupling at conditioning potentials between ?60 and 0 mV would shift Vt to more positive potentials, and that fibers would become inactivatable with less conditioning depolarization in EDL than soleus. The curve relating Vt to conditioning potential had a negative slope (which was insensitive to addition of 1 mm cobalt or replacement of calcium with 20 mm CaEGTA) between ?60 and ?35 mV and a steep positive slope with further depolarization. Unexpectedly, fibers became inactivatable with less conditioning depolarization in soleus than in EDL when Vt was measured with 50 msec test pulses. However, the positive shift in Vt became less steep as test pulse duration lengthened in soleus fibers. When Vt obtained with test pulses approaching rheobase (10 msec in EDL and 500 msec in soleus) was compared, EDL fibers became inactive with less conditioning depolarization than soleus fibers. The increase in Vt became steeper with 1 mm cobalt or 20 mm CaEGTA and was shifted to more positive potentials by denervation in soleus fibers. We conclude that inactivation (i) does not strongly influence threshold contractions at conditioning potentials between ?60 and ?40 mV and (ii) influences Vt between ?40 and 0 mV in a manner that depends on test pulse duration.  相似文献   

3.
Theoretical net ionic movements have been calculated for the propagated impulse of the squid axon from the Hodgkin-Huxley equations. The computed potassium movements agree approximately with the experimental data of Shanes, but vary too much with temperature (Q10 = 1/2.75 from computation, 1/1.91 from experiment). Theoretical corrections providing higher ionic conductances increasing with temperature (according to J. W. Moore's experiments) give a Q10 of 1/2.24, but the incorporation of the higher values of the maximum conductances, as observed under improved environmental conditions, leads to potassium movements that are considerably higher than Shanes's values.  相似文献   

4.
Near-infrared laser provides a novel nerve stimulation modality to regulate the cell functions. Understanding its physiological effect is a prerequisite for clinic laser therapy applications. Here, the whole-cell sodium (Na) channel kinetics of neuron cell was employed to determine the temporal roles of infrared laser. The Na currents were elicited by electrical pulses that were synchronized at the rising and falling edges of the 980 nm laser pulses, respectively, to investigate the different infrared effect on cell functions. The time constants of activation (τ m) and inactivation (τ h) kinetics were extracted from fitting of the Na current (m3h) according to the Hodgkin–Huxley (HH) model. By comparing the time constants without and with the laser irradiation, we obtained that laser pulses changed the Na current kinetics by accelerating τ h-phase and slowing down τ m-phase at the beginning of the laser pulse, whereas both phases were accelerated at the end of the pulse. After relating the ratios of the time constants to the temperature characteristics of Na channel by Q 10, we found that the accelerating in Na current kinetics could be related to the average temperature of extracellular solution in the corresponding time span by choosing Q 10 = 2.6. The results of this study demonstrated that there was a positive correlation between the acceleration of the Na current kinetics and increases in temperature of the extracellular solution.  相似文献   

5.
Temperature-jump experiments on isolated myelinated nerve fibers were done using a pulsed laser system in the Q switched mode. Voltage-clamp and temperature perturbations were used to measure the relaxing ionic conductances of both the Na+ and K+ systems. It is shown that the T jump can be used to probe the K+ and Na+ conductances during non-steady state conditions and thereby elicit relaxation times for a variety of initial states. Temperature-induced K+ conductance relaxation times were consistent with voltage-clamp measurements. The temperature-perturbation experiments were done as a combination of a temperature step and impulse change due to an adsorption of carbon black particles on the nerve. The experiments support the hypothesis that the relaxation times of the K+ system are independent of the previous history of the axon. It is concluded that the K+ conductance is at least a second-order system whose relaxation spectrum is composed of two exponential terms the magnitudes of which are markedly dependent on the initial conditions.  相似文献   

6.
Electric field pulses induce a substantial increase of the light scattering intensity of double-helical DNA. The relative change of light scattering and also the reciprocal relaxation time constants under electric field pulses increase with increasing nucleotide concentration. These observations, together with a large difference between dichroism orientation time constants and light scattering time constants under electric field pulses, demonstrate that the main part of the light scattering effect is due not to field-induced orientation but to interactions between DNA helices. From the concentration dependence of the light scattering time constants we obtain, according to an isodesmic reaction model, association rate constants in the range 3 × 1010 M?1 helices s?1 for DNA with approx. 300 base-pairs. These values are at the limit of a diffusion-controlled DNA association and do not show any dependence upon the field strength. The dissociation rate constants kd decrease strongly with increasing field strength E and thus demonstrate that the interactions between the helices are induced by the electric field. This conclusion is consistent with independent measurements which do not reveal any DNA association at zero field strength. The observed linear relation between log(kd) and E2 suggests a field-induced reaction driven by dipole changes. According to this interpretation the change of dipole moment should be in the range of approx. 1400 debye. The dissociation rates for DNA helices with approx. 300 to approx. 800 base-pairs strongly increase with increasing sail concentration (measured in the range 1–5 mM ionic strength), whereas the association rate constants remain virtually unchanged. Measurements of the linear dichroism in the same range of DNA chain length demonstrate that for long field pulses of e.g., 40 μs, the amplitude approaches a maximum value and then decreases. The dichroism relaxation curves observed after long field pulses exhibit a component with a positive dichroism and an increased decay time. These observations suggest the formation of a DNA aggregate with an unusual arrangement of the bases.  相似文献   

7.
Pulsed NMR techniques have been applied to the study of the relaxation parameters characterizing 23Na within frog striated muscle. Experiments were performed at 3°C, 22–24°C and 39°C at a Larmor frequency of 15.7 MHz; at 22–24°C, measurements were obtained both at 15.7 MHz and at 7.85 MHz.As previously reported, only a single spine-lattice relaxation time (T1) was observed, but both slow (T2)I and fast (T2)II components of the spin-spin relaxation time were measured. The effect of temperature (θ) upon (1/T1) was qualitatively similar to that reported for 23Na in free solution; (θ) did not significantly affect (1/T2) over the range of temperatures studied. (1/T2)I, and to a lesser degreee, (1/T1) exhibited a modest inverse dependence of doubtful significance on the Larmor frequency.The data are examined within the framework of a simple specific model; a conservative values in assumed for the quadrupolar coupling constant characterizing immobilized intracellular Na+. Within this framework, the results suggest that the fraction of bound ions whose molecular tumbling is severely restricted does not exceed some few percent of the total sodium population.  相似文献   

8.
Alternating current threshold excitation of space-clamped squid giant axons was measured as a function of frequency, external calcium concentration, temperature (from 10° to 35°C), and hyper- and depolarizing steps. In normal axons there is usually an optimum frequency at about 120 Hz, at which the threshold is a minimum. The threshold rises at both lower and higher frequencies to give a resonance curve. Low calcium causes an increase in optimum frequency, a decrease in current threshold, and an increase in sharpness of tuning in both real axons and axons computed according to the Hodgkin-Huxley formulation; high calcium causes opposite effects. An increase in temperature causes an increase of optimum frequency, an increase in sharpness of tuning, and an increase in threshold current in both real and computed axons. The Q10 for the effect of temperature upon optimum frequency is 1.8 in real and computed axons at moderate temperatures. Hyperpolarization causes (a) a decrease in optimum frequency, (b) a decrease in sharpness of tuning, and (c) an increase in threshold. Depolarization causes opposite effects.  相似文献   

9.
The unidirectional influxes of Na, K, and Cl into isolated strips of rabbit ileum are comprised of movements across the mucosal membrane of the epithelial cells and ionic diffusion into an extracellular shunt pathway. A large fraction of the Na influx across the mucosal membrane alone is inhibited by Li, suggesting the participation of a carrier mechanism in the influx process. The partial ionic shunt conductances of Na, K, and Cl account for at least 82% of the total tissue conductance. The calculated shunt permeabilities (P) are (in centimeters per hour) PK = 0.040, PNa = 0.035, and PCl = 0.019, so that PK:PNa:PCl = 1.14:1.00:0.55. Diffusion potentials across the tissue resulting from isotonic replacement of NaCl in the mucosal solution with mannitol or KCl are described by the Goldman constant-field equation together with the above permeabilities of the shunt pathway. These observations are not consistent with permeation through a fixed-charge pore but can be explained by a model featuring constant ionic partition into a neutral-polar pore that traverses the tight junction. Such a pore may be lined with either fixed dipoles or fixed dipolar ions oriented such that electronegative groups influence the permselective properties of the diffusion pathway. The essential feature of both models is that electroneutrality is maintained by means of fixed membrane components and does not depend upon the presence of mobile counterions.  相似文献   

10.
1.
1. The dissociation of insulin is favored by (a) an increase in charge, (b) a decrease in ionic strength, and (c) an increase in temperature.  相似文献   

11.
An Analysis of the Striated Muscle Fiber Action Current   总被引:1,自引:0,他引:1       下载免费PDF全文
A method is presented for determining the magnitude of the ionic current associated with the propagated spike potential. Parameters of the action current are then compared to various aspects of the response as recorded in a phase plane. The findings also include evidence for (a) Na+ ion as the major inward current carrier, (b) a fairly constant membrane conductance during the terminal phase (~1 msec.) of the spike potential, and (c) the influence of Ca++ ion concentration on the action current.  相似文献   

12.
We have analysed the field-induced conformation change of DNA by absorbance measurements at the magic angle. Conformation changes are observed when the electric field strength exceeds a clearly defined threshold value. The threshold values increase with increasing salt concentration and show a linear dependence upon the logarithm of the ionic strength. Measurements with homogeneous DNA samples of different chain lengths N show that the threshold increases with decreasing N; at a given ionic strength the threshold is a linear function of the logarithm of N. The threshold value observed for a circular DNA molecule with a chain length Nc fits to these data with an effective length Nc/2. This result indicates that the length of maximal extension is important for the field-induced reaction and suggests, together with the other results, that the field-induced reaction is mainly driven by a polarization of the ion atmosphere along the axis of DNA, Some data are also given for the dynamics of the reaction: at high electric field pulses the first step is a fast deslacking and lilting of the bases followed by a slow unwinding process. For short pulses the reaction is almost completely reversible with a characteristic time constant of about 3 μs for the back reaction.  相似文献   

13.
The effects of the cardiac glycoside dihydroouabain (DHO), and the ericaceous toxin grayanotoxin-I (GTX-I) on myocardial cellular sodium (Nai) concentrations were investigated using sodium-23 nuclear magnetic resonance (23Na NMR) spectroscopy at 30°C in isolated perfused guinea-pig hearts. The Nai NMR signals from perfused Langendorff heart preparations were obtained by the modified inversion recovery (IR) method based on the previous observation that the spin-lattice relaxation time (T1) of the Nai (25 or 34 msec at 8.46 Tesla (T)) is much faster than that of extracellular sodium (64 msec at 9.4 T). Nai was estimated from the calibration curve of the frequency area of the23Na NMR FT spectra plotted against the standard Na concentration. The Nai concentration of the heart increased concomitantly with the positive inotropic effects (PIE) of DHO, GTX-I and monensin (MON). The cumulative sequential addition of DHO (5×10–6 M), GTX-I (7×10–8 M) and MON (5×10–6 M), each of which alone induced no appreciable PIE, produced a 22% elevation in Nai concentration relative to that of the control (100%) accompanying a PIE of 44%. The mechanism of this Nai elevation induced by combinational addition of DHO, GTX-I and MON may be mediated as follows: GTX-I increases the net Na-influxvia Na+ channels; DHO inhibits the pumping out of Na+ from the cell; and MON transports external Na+ into the cell, acting as a sodium ionophore. Consequently, these drugs act synergistically to increase the Nai, thereby increasing the intracellular Ca2+ concentrationvia Na+–Ca2+ exchange.  相似文献   

14.
In the present study, we clarified how the NaCl gradient across the epithelial cells regulates the paracellular ion conductance. Under isotonic conditions, the absorption-directed NaCl gradient elevated the paracellular conductances of Na(+) (G(Na)) and Cl(-) (G(Cl)), while the secretion-directed NaCl gradient diminished the G(Na) and G(Cl). We further investigated the paracellular ionic conductances of NMDG (G(NMDG)) and gluconate (G(gluconate)) by replacing Na(+) with NMDG or Cl(-) with gluconate. The G(NMDG) was lower than the G(Na) and the replacement of Na(+) with NMDG decreased the G(Cl). The G(gluconate) was lower than the G(Cl) and the replacement of Cl(-) with gluconate also decreased the G(Na). These observations suggest the interaction of cations and anions on paracellular ionic conductances; i.e., cations affect paracellular anion conductances and anions affect paracellular cation conductances.  相似文献   

15.
Sodium Flux in Necturus Proximal Tubule under Voltage Clamp   总被引:6,自引:4,他引:2       下载免费PDF全文
Na transport and electrical properties of Necturus renal proximal tubules were analyzed, in vivo, by a voltage clamp method which utilizes an axial electrode in the tubule lumen for passage of current and simultaneous determination of net fluid (or Na) flux by the split droplet method. When the average spontaneous transepithelial potential difference of –8 mv (lumen negative) was reduced to zero by current passage, net Na flux doubled from a mean of 107 to 227 pmoles/cm2 per sec. The relationship between flux and potential over the range –25 to +10 mv was nonlinear, with flux equilibrium at –15 mv and droplet expansion at more negative values. Calculated Na permeability at flux equilibrium was 7.0 x 10–6 cm/sec. Voltage transients, similar to those caused by intraepithelial unstirred layers, were observed at the end of clamping periods. Tubular electrical resistance measured by brief square or triangle wave pulses (<100 msec) averaged 43 ohm cm2. The epithelial current-voltage relationship was linear over the range –100 to +100 mv, but displayed marked hysteresis during low frequency (<0.04 Hz) triangle wave clamps. The low transepithelial resistance and large opposing unidirectional ion fluxes suggest that passive ionic movements occur across extracellular shunt pathways, while the voltage transients and current-voltage hysteresis are consistent with the development of a local osmotic gradient within epithelium.  相似文献   

16.
The kinetics of the melting transitions of tRNAphe (yeast) were followed by the fluorescence of the Y-base and of formycin substituted for the 3'-terminal adenine. As judged from differential UV absorbance melting cutves the formycin label had virtually no influence on the conformation of the tRNA. A temperature jump apparatus was modified to allow the simultaneous observation of transmission and fluorescence intensities by two independent optical channels. The design of a temperature jump cell with an all quartz center piece is given. The cell is resistant to temperatures up to 90°C; it provides high optical sensitivity, low stray light intensity and the possibility of measuring fluorescence polarization. The T-jump experiments allowed to discriminate between fast unspecific fluorescence quenching (τ <5 μsec) and slow co-operative conformational changes. In the central part of the temperature range of UV-melung (midpoint temperature 30°C in 0.01 M Na+ and 39°C in 0.03 M Na+, pH 6.8) two resolvable relaxation processes were observed. The coirssponding relaxation times were 20 msec and 800 msec at 30°C in 0.01 M Na+, and 4 msec and 120 msec at 39°C in 0.03 M Na+. The Y-base fluorescence shows both of the relaxation effects, which almost cancel in equilibrium fluorescence melting, because their amplitudes have opposite signs. From this finding the existence of some residual tertiary structure is inferred which persists after the unfolding of the main part of tertiary structure durirg early melting (midpoint temperature 24°C in 0.03 M Na+). In the fluorescence sigXXX of the formycin also the two relaxation effects appear. Both of them are connected with a decrease of the fluorescence intensity. From the results a coupled opening of the anticodon and acceptor branches is concluded.Enzymes: phenylalanyl-tRNA synthetase, PRS (EC 6.1.1.-20); ATP (CTP) tRNA nucleotidyl transferase, NT (EC 2.7.7.-20); alkaline phosphatase (EC 3-1-3.1).  相似文献   

17.
Membrane excitability is a critical regulatory step in skeletal muscle contraction and is modulated by local ionic concentrations, conductances, ion transporter activities, temperature, and humoral factors. Intense fatiguing contractions induce cellular K(+) efflux and Na(+) and Cl(-) influx, causing pronounced perturbations in extracellular (interstitial) and intracellular K(+) and Na(+) concentrations. Muscle interstitial K(+) concentration may increase 1- to 2-fold to 11-13 mM and intracellular K(+) concentration fall by 1.3- to 1.7-fold; interstitial Na(+) concentration may decline by 10 mM and intracellular Na(+) concentration rise by 1.5- to 2.0-fold. Muscle Cl(-) concentration changes reported with muscle contractions are less consistent, with reports of both unchanged and increased intracellular Cl(-) concentrations, depending on contraction type and the muscles studied. When considered together, these ionic changes depolarize sarcolemmal and t-tubular membranes to depress tetanic force and are thus likely to contribute to fatigue. Interestingly, less severe local ionic changes can also augment subtetanic force, suggesting that they may potentiate muscle contractility early in exercise. Increased Na(+)-K(+)-ATPase activity during exercise stabilizes Na(+) and K(+) concentration gradients and membrane excitability and thus protects against fatigue. However, during intense contraction some Na(+)-K(+) pumps are inactivated and together with further ionic disturbances, likely precipitate muscle fatigue.  相似文献   

18.
Temperature characteristics of excitability in the squid giant axon were measured for the space-clamped axon with the double sucrose gap technique. Threshold strength-duration curves were obtained for square wave current pulses from 10 µsec to 10 msec and at temperatures from 5°C to 35°C. The threshold change of potential, at which an action potential separated from a subthreshold response, averaged 17 mv at 20°C with a Q10 of 1.15. The average threshold current density at rheobase was 12 µa/cm2 at 20°C with a Q10 of 2.35 compared to 2.3 obtained previously. At short times the threshold charge was 1.5·10-8 coul/cm2. This was relatively independent of temperature and occasionally showed a minimum in the temperature range. At intermediate times and all temperatures the threshold currents were less than for both the single time constant model and the two factor excitation process as developed by Hill. FitzHugh has made computer investigations of the effect of temperature on the excitation of the squid axon membrane as represented by the Hodgkin-Huxley equations. These are in general in good agreement with our experimental results.  相似文献   

19.
In proximity to seismic operations, bowhead whales (Balaena mysticetus) decrease their calling rates. Here, we investigate the transition from normal calling behavior to decreased calling and identify two threshold levels of received sound from airgun pulses at which calling behavior changes. Data were collected in August–October 2007–2010, during the westward autumn migration in the Alaskan Beaufort Sea. Up to 40 directional acoustic recorders (DASARs) were deployed at five sites offshore of the Alaskan North Slope. Using triangulation, whale calls localized within 2 km of each DASAR were identified and tallied every 10 minutes each season, so that the detected call rate could be interpreted as the actual call production rate. Moreover, airgun pulses were identified on each DASAR, analyzed, and a cumulative sound exposure level was computed for each 10-min period each season (CSEL10-min). A Poisson regression model was used to examine the relationship between the received CSEL10-min from airguns and the number of detected bowhead calls. Calling rates increased as soon as airgun pulses were detectable, compared to calling rates in the absence of airgun pulses. After the initial increase, calling rates leveled off at a received CSEL10-min of ~94 dB re 1 μPa2-s (the lower threshold). In contrast, once CSEL10-min exceeded ~127 dB re 1 μPa2-s (the upper threshold), whale calling rates began decreasing, and when CSEL10-min values were above ~160 dB re 1 μPa2-s, the whales were virtually silent.  相似文献   

20.
《Inorganica chimica acta》1986,121(2):161-166
Atomic Na, K and Cs were codeposited with CO2 in excess of matrix gas at the temperature of 12 K. The IR spectra revealed the presence of ionic aggregates corresponding to the molecules M(CO)2 and M2(CO2) (M=Na, K, Cs). Both molecular species have C2v symmetry; M(CO2) species have a planar ring structure while M2(CO2) have a W-shape structure. M2(CO2) molecules with Cs symmetry were also identified. The geometrical parameters of all the molecules were determined by 12C/13C and 16O/18O isotopic shifts. Raman spectra were also recorded and the results are reported in this study. The effect of photolysis on the structure of these molecules was examined. It was determined that photolysis promotes the formation of Na(CO2) and transforms the M2(CO2) molecules with C2v symmetry into Cs symmetry isomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号