首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The metabolism of xanthine and hypoxanthine in excised shoot tips of tea was studied with micromolar amounts of [2(-14)C]xanthine or [8(-14)C]hypoxanthine. Almost all of the radioactive compounds supplied were utilized by tea shoot tips by 30 h after their uptake. 2. The main products of [2(-14)C]xanthine and [8(-14)C]hypoxanthine metabolism in tea shoots were urea, allantoin and allantoic acid. There was also incorporation of the label into theobromine, caffeine and RNA purine nucleotides. 3. The results indicate that tea plants can catabolize purine bases by the same pathways as animals. It is also suggested that tea plants have the ability to snythesize purine nucleotides from glycine by the pathways of purine biosynthesis de novo and from hypoxanthine and xanthine by the pathway of purine salvage. 4. The results of incorporation of more radioactivity from [8(-14)C]hypoxanthine than from [2(-14)C]xanthine into RNA purine nucleotides and caffeine suggest that hypoxanthine is a more effective precursor of caffeine biosynthesis than xanthine. The formation of caffeine from hypoxanthine is a result of nucleotide synthesis via the pathway of purine salvage.  相似文献   

2.
The metabolism of adenine and guanine, relating to the biosynthesis of caffeine, in excised shoot tips of tea was studied with micromolar amounts of adenine-[8-14C] or guanine-[8-14C]. Among the presumed precursors of caffeine biosynthesis, adenine was the most effective, whereas guanine was the least effective. After administration of a ‘pulse’ of adenine-[8-14C], almost all of the adenine-[14C] supplied disappeared by 30 hr, and 14C-labelled caffeine and RNA purine nucleotide (AMP and GMP) synthesis increased throughout the experimental period, whereas the radioactivities of free purine nucleotides, 7-methylxanthine and theobromine increased during the first 10 hr incubation period, followed by a steady decrease. By contrast, more than 45% of the guanine-[8-14C] supplied remained unchanged even after a 120 hr period. The main products of guanine-[8-14C] metabolism in tea shoot tips were guanine nucleotides, theobromine, caffeine and the GMP of RNA. The results support the hypothesis that the purine nucleotides are synthesized from adenine and guanine via the pathway of purine salvage. Adenylate is readily converted into other purine nucleotides, whereas the conversion rate of guanylate into other purine nucleotides is very low.The results also support the view that 7-methylxanthine and theobromine are precursors of caffeine. For the origin of the purine ring in caffeine, purine nucleotides in the nucleotide pool rather than in nucleic acids are suggested.  相似文献   

3.
The biosynthesis and metabolism of purine alkaloids in leaves ofCamellia ptilophylla (cocoa tea), a new tea resource in China, have been investigated. The major purine alkaloid was theobromine, with theophylline also being present as a minor component. Caffeine was not accumulated in detectable quantities. Theobromine was synthesized from [8-14C] adenine and the rate of its biosynthesis in the segments from young and mature leaves from flush shoots was approximately 10 times higher than that from aged leaves from 1-year old shoots. Neither cellfree extracts nor segments fromC. ptilophylla leaves could convert theobromine to caffeine. A large quantity of [2-14C] xanthine taken up by the leaf segments was degraded to14CO2 via the conventional purine catabolic pathway that includes allantoin as an intermediate. However, small amounts of [2-14C] xanthine were also converted to theobromine. Considerable amounts of [8-14C] caffeine exogenously supplied to the leaf segments ofC. ptilophylla was changed to theobromine. These results indicate that leaves ofC. ptilophylla exhibit unusual purine alkaloid metabolism as i) they have the capacity to synthesize theobromine from adenine nucleotides, but they lack adequate methyltransferase activity to convert of theobromine to caffeine in detectable quantities, ii) the leaves have a capacity to convert xanthine to theobromine, probably via 3-methylxanthine.  相似文献   

4.
Keya CA  Crozier A  Ashihara H 《FEBS letters》2003,554(3):473-477
The effects of ribavirin, an inhibitor of inosine-5'-monophosphate (IMP) dehydrogenase, on [8-(14)C]inosine metabolism in tea leaves, coffee leaves and coffee fruits were investigated. Incorporation of radioactivity from [8-(14)C]inosine into purine alkaloids, such as theobromine and caffeine, guanine residues of RNA, and CO(2) was reduced by ribavirin, while incorporation into nucleotides, including IMP and adenine residues of RNA, was increased. The results indicate that inhibition of IMP dehydrogenase by ribavirin inhibits both caffeine and guanine nucleotide biosynthesis in caffeine-forming plants. The use of IMP dehydrogenase-deficient plants as a potential source of good quality caffeine-deficient tea and coffee plants is discussed.  相似文献   

5.
We examined the purine alkaloid content and purine metabolism in cacao (Theobroma cacao L.) plant leaves at various ages: young small leaves (stage I), developing intermediate size leaves (stage II), fully developed leaves (stage III) from flush shoots, and aged leaves (stage IV) from 1-year-old shoots. The major purine alkaloid in stage I leaves was theobromine (4.5 μmol g–1 fresh weight), followed by caffeine (0.75 μmol g–1 fresh weight). More than 75% of purine alkaloids disappeared with subsequent leaf development (stages II–IV). In stage I leaves, 14C-labelled adenine, adenosine, guanine, guanosine, hypoxanthine and inosine were converted to salvage products (nucleotides and nucleic acids), to degradation products (ureides and CO2) and to purine alkaloids (3- and 7-methylxanthine, 7-methylxanthosine and theobromine). In contrast, 14C-labelled xanthine and xanthosine were not used for nucleotide synthesis. They were completely degraded, but nearly 20% of [8-14C]Xanthosine was converted in stage I leaves to purine alkaloids. These observations are consistent with the following biosynthetic pathways for theobromine: (a) AMP → IMP → 5′-xanthosine monophosphate → xanthosine → 7-methylxanthosine → 7-methylxanthine → theobromine; (b) GMP → guanosine → xanthosine → 7-methylxanthosine → 7-methylxanthine → theobromine; (c) xanthine → 3-methylxanthine → theobromine. Although no caffeine biosynthesis from 14C-labelled purine bases and nucleosides was observed during 18 h incubations, exogenously supplied [8-14C]Theobromine was converted to caffeine in young leaves. Conversion of theobromine to caffeine may, therefore, be slow in cacao leaves. No purine alkaloid synthesis was observed in the subsequent growth stages (stages II–IV). Significant degradation of purine alkaloids was found in leaves of stages II and III, in which [8-14C]Theobromine was degraded to CO2 via 3-methylxanthine, xanthine and allantoic acid. [8-14C]Caffeine was catabolised to CO2 via theophylline (1,3-dimethylxanthine) or theobromine.  相似文献   

6.
Biosynthesis of Caffeine in Flower Buds of Camellia sinensis   总被引:1,自引:0,他引:1  
The biosynthesis of purine alkaloids in flower buds of tea plantswas investigated. More than 25% of total radioactivity of [8-14C]adeninetaken up by stamens isolated from tea flower buds was foundto have been incorporated into purine alkaloids, namely, theobromineand caffeine, 24 h after administration of the labelled compound.Pulse-chase experiments indicated that [8-14C]adenine takenup by the stamens was converted to adenine nucleotides and subsequentlyincorporated into theobromine and caffeine. Since 5 µMcoformycin, an inhibitor of AMP deaminase, inhibited the incorporationof radioactivity into the purine alkaloids, synthesis of caffeinefrom adenine nucleotides seems to be initiated by the reactionof AMP deaminase. Although most of the radioactivity from [8-14C]inosinewas recovered as CO2 and ureides, considerable amounts of radioactivitywere recovered as purine alkaloids. The incorporation of radioactivityfrom [8-14C]inosine into the purine alkaloids was not affectedby coformycin. The five enzymes involved in synthesis of 5-phosphoribosyl-1-pyrophosphatefrom glucose were present in the stamens and petals of tea flowerbuds. From present and previous results, the pathway for thebiosynthesis of caffeine from adenine nucleotides in flowerbuds of tea is discussed.Copyright 1993, 1999 Academic Press Camellia sinensis, tea, stamen, flower, biosynthesis, purine alkaloids, caffeine, theobromine, adenine nucleotides, nucleotide biosynthesis  相似文献   

7.
We have studied the purine alkaloid content and purine metabolism in Theobroma cacao fruits at differing growth stages: Stage A (young small fruit, fresh weight, ca. 2 g); stage B (medium size fruit, fresh weight, ca. 100 g) and stage C (large size, fresh weight, ca. 500 g). The major purine alkaloid in stage A fruits (mainly pericarp) was theobromine (0.7 micromol g(-1) fresh weight), followed by caffeine (0.09 micromol g(-1) fresh weight). The theobromine content of the pericarp decreased sharply with tissue age, and the caffeine content decreased gradually. A large amount of theobromine (22 micromol g(-1) fresh weight) had accumulated in seeds (mainly cotyledons) of stage C fruits. Theobromine was found also in the seed coat and placenta. Tracer experiments with [8-(14)C]adenine show that the major sites of theobromine synthesis are the young pericarp and cotyledons of T. cacao fruits. Limited amounts of purine alkaloids may be transported from the pericarp to seed tissue, but most purine alkaloids that accumulated in seeds appeared to be synthesised in cotyledons. Degradation of [8-(14)C]theobromine and [8-(14)C]caffeine to CO2 via 3-methylxanthine and ureides (allantoin and allantoic acid) was detected only in the pericarp of stage C fruits.  相似文献   

8.
The metabolic fate of [carbonyl-(14)C]nicotinamide, [8-(14)C]adenine and [8-(14)C]inosine was examined in microspore-derived canola (Brassica napus) embryos at different developmental stages: globular stage (day 10, stage 1), early cotyledonary stage (day 20, stage 2), late cotyledonary stage (day 25, stage 3), and fully developed stage (day 35, stage 4). Uptake of [8-(14)C]nicotinamide by the embryos was always rapid. A lower uptake rate was found for [8-(14)C]adenine and [8-(14)C]inosine, especially at stages 1 and 2. [Carbonyl-(14)C]nicotinamide was converted to nicotinic acid and further metabolized to pyridine nucleotides (NAD/NADP). Some radioactivity was also associated to nicotinic acid glucoside. [8-(14)C]adenine was efficiently utilized for the synthesis of adenine nucleotides and RNA. A small fraction of adenine was degraded to CO(2) via ureides. Up to 40% of [8-(14)C]inosine was salvaged to nucleotides and RNA, although degradation of [8-(14)C]inosine to CO(2) was pronounced. At stage 1, highest salvage activities of nicotinamide, adenine and inosine were observed. In contrast, the lowest purine salvage and highest purine catabolism were found in stage 3 embryos. These results suggest that both nicotinamide and purine salvage for NAD/NADP and purine nucleotides synthesis are extremely high in the globular stage (stage 1). These activities decrease gradually until the late cotyledonary stage (stage 3), before increasing again in the fully developed embryos (stage 4). Overall it appears that nicotinamide and purine salvage are required in support of active growth during the initial phases of embryogenesis and at the end of the maturation period, in preparation for post-embryonic growth.  相似文献   

9.
Caffeine (1,3,7-trimethylxanthine) and theobromine (3,7-dimethylxanthine) are purine alkaloids that are present in high concentrations in plants of some species of Camellia. However, most members of the genus Camellia contain no purine alkaloids. Tracer experiments using [8-14C]adenine and [8-14C]theobromine showed that the purine alkaloid pathway is not fully functional in leaves of purine alkaloid-free species. In five species of purine alkaloid-free Camellia plants, sufficient evidence was obtained to show the occurrence of genes that are homologous to caffeine synthase. Recombinant enzymes derived from purine alkaloid-free species showed only theobromine synthase activity. Unlike the caffeine synthase gene, these genes were expressed more strongly in mature tissue than in young tissue. The nucleotide sequence data reported here have been deposited in the GenBank database under the accession numbers AB297451 (CjCS1), AB362882 (CgCS1), AB362883 (CgCS2), AB362884 (CkCS1), AB362885 (ClCS1), and AB362886 (CcCS2).  相似文献   

10.
Biosynthesis of Purine Alkaloids in Camellia Plants   总被引:2,自引:0,他引:2  
The metabolism of [8-14C]adenine and [8-14C]hypoxanthine infour species of Camellia plants was investigated in relationto the synthesis of purine alkaloids, caffeine and theobromine.Young leaves of C. sinensis had the ability to synthesize caffeine,but in C. irrawadiensis, these labelled precursors were incorporatedinto theobromine, not caffeine. No synthesis of purine alkaloidscould be detected in C. japonica and C. sasanqua leaves. Conventional"salvage" and degradation pathways of purines were present inall species of Camellia plants examined. 1 Present address: Research Center, Mitsubishi Chemical IndustriesLtd., 1000 Kamisida-cho, Midori-ku, Yokohama, 227 Japan. (Received September 29, 1986; Accepted January 22, 1987)  相似文献   

11.
Metabolism of methylamine in the tea plant (Thea sinensis L.)   总被引:5,自引:4,他引:1       下载免费PDF全文
1. The metabolism of methylamine in excised shoot tips of tea was studied with micromolar amounts of [(14)C]methylamine. Of the [(14)C]methylamine supplied 57% was utilized by tea shoots during the 10h experimental period. 2. The main products of [(14)C]methylamine metabolism in tea shoots were serine, gamma-glutamylmethylamide, theobromine, caffeine and CO(2). There was also incorporation of the label into glutamate, aspartate, RNA purine nucleotides and S-adenosylmethionine. 3. The formation of methylamine from gamma-glutamylmethylamide was confirmed by feeding tea shoots with gamma-glutamyl[(14)C]methylamide. The products of gamma-glutamyl[(14)C]methylamide metabolism in tea plants were serine, theobromine, caffeine, glutamate and aspartate. 4. The results indicate that the oxidation of methylamine to formaldehyde is the first step of methylamine utilization. Labelled formaldehyde released by the metabolism of methylamine leads to the incorporation of the label into metabolites on the C(1) pathways of this compound. It is also suggested that formaldehyde is further oxidized via formate to CO(2). 5. The role of gamma-glutamylmethylamide in methylamine metabolism in tea plants is discussed. 6. Results support the view that theobromine is the immediate precursor of caffeine.  相似文献   

12.
Theacrine (1,3,7,9-tetramethyluric acid) and caffeine were the major purine alkaloids in the leaves of an unusual Chinese tea known as kucha (Camellia assamica var. kucha). Endogenous levels of theacrine and caffeine in expanding buds and young leaves were ca. 2.8 and 0.6-2.7% of the dry wt, respectively, but the concentrations were lower in the mature leaves. Radioactivity from S-adenosyl-L-[methyl-14C]methionine was incorporated into theacrine as well as theobromine and caffeine by leaf disks of kucha, indicating that S-adenosyl-L-methionine acts as the methyl donor not only for caffeine biosynthesis but also for theacrine production. [8-14C]Caffeine was converted to theacrine by kucha leaves with highest incorporation occurring in expanding buds. When [8-14C]adenosine, the most effective purine precursor for caffeine biosynthesis in tea (Camellia sinensis), was incubated with young kucha leaves for 24 h, up to 1% of total radioactivity was recovered in theacrine. However, pulse-chase experiments with [8-14C]adenosine demonstrated much more extensive incorporation of label into caffeine than theacrine, possibly because of dilution of [14C]caffeine produced by the large endogenous caffeine pool. These results indicate that in kucha leaves theacrine is synthesized from caffeine in what is probably a three-step pathway with 1,3,7-methyluric acid acting an intermediate. This is a first demonstration that theacrine is synthesized from adenosine via caffeine.  相似文献   

13.
以[8-14C]标记的腺嘌呤和黄嘌呤为底物,对两种可以合成少量咖啡碱和茶叶碱的木荷属和柃木属植物(Schima mertensiana,Eurya japonica)叶片的嘌呤代谢进行了检测研究。发现木荷属和柃木属植物中嘌呤代谢相似,14C标记的腺嘌呤可以整合到嘌呤核苷酸、RNA、酰脲(包括尿囊素和尿囊酸)、二氧化碳中。经过24 h培养,在叶片吸收的放射能中,仅有6%~7%用于甲基黄嘌呤类化合物的合成(3-甲基黄嘌呤、7-甲基黄嘌呤核苷、7-甲基黄嘌呤、茶叶碱)。和其他植物一样,绝大多数14C标记的黄嘌呤整合到嘌呤的分解代谢物中(二氧化碳和酰脲),少量的放射能分布在3-甲基黄嘌呤及茶叶碱中。根据结果可以推断木荷属和柃木属植物具有N-甲基转移酶活性,可以用来合成咖啡碱和茶叶碱,相对于茶树而言,活性不高。综上,本文对木荷属和柃木属植物的嘌呤代谢以及嘌呤碱合成进行了研究。  相似文献   

14.
1. Caffeine biosynthesis was studied by following the incorporation of 14C into the products of L-[Me-14C]methionine metabolism in tea shoot tips. 2. After administration of a 'pulse' of L-[Me-14C]methionine, almost all of the L-[Me-14C]methionine supplied disappeared within 1 h, and 14C-labelled caffeine synthesis increased throughout the experimental periods, whereas the radioactivities of an unknown compound and theobromine were highest at 3 h after the uptake of L-[Me-14C]methionine, followed by a steady decrease. There was also slight incorporation of the label into 7-methylxanthine, serine, glutamate and aspartate, disappearing by 36 h after the absorption of L-[Me-14C]methionine. 3. The radioactivities of nucleic acids derived from L-[Me-14C]methionine increased rapidly during the first 12 h incubation period and then decreased steadily. Sedimentation analysis of nucleic acids by sucrose-gradient centrifugation showed that methylation of nucleic acids in tea shoot tips occurred mainly in the tRNA fraction. The main product among the methylated bases in tea shoot tips was identified as 1-methyladenine. 4. The results indicated that the purine ring in caffeine is derived from the purine nucleotides in the nucleotide pool rather than in nucleic acids. A metabolic scheme to show the production of caffeine and related methylxanthines from the nucleotides in tea plants is discussed.  相似文献   

15.
1. Extracts prepared from tea leaves with Polyclar AT (insoluble polyvinylpyrrolidine) contained two methyltransferase activities catalysing the transfer of methyl groups from S-adenosylmethionine to 7-methylxanthine, producing theobromine, and to theobromine, producing caffeine. 2. The methyltransferases exhibited the same pH optimum (8.4) and a similar pattern of effects by metal ions, thiol inhibitors and metal-chelating reagents, both for theobromine and caffeine synthesis. Mg2+, Mn2+ and Ca2+ slightly stimulated enzyme activity but they were not essential. Paraxanthine was shown to be most active among methylxanthines, as the methyl acceptor. However, the formation of paraxanthine from 1-methylxanthine was very low and that from 7-methylxanthine was nil, suggesting that the synthesis of caffeine from paraxanthine is of little importance in intact plants. Xanthine, xanthosine, XMP and hypoxanthine were all inactive as methyl acceptors, whereas [2(-14)C]xanthine and [8(-14)C]hypoxanthine were catabolized to allantoin and urea by tea-leaf extracts. The apparent Km values are as follows: 7-methylxanthine, 1.0 times 10(-14)M; theobromine, 1.0 times 10(-3)M; paraxanthine, 0.2 times 10(-3)M; S-adenosylmethionine, 0.25 times 10(-4)M (with each of the three substrates). 3. The results suggest that the pathway for caffeine biosynthesis is as follows: 7-methylxanthine leads to theobromine leads to caffeine. In contrast, it is suggested that theophylline is synthesized from 1-methylxanthine. The methyl groups of the purine ring of caffeine are all derived directly from the methyl group of S-adenosylmethionine. Little is known about the pathways leading to the formation of 7-methylxanthine. 4. A good correlation between caffeine synthesis and shoot formation or growth of tea seedlings was shown, suggesting that the methylating systems in caffeine synthesis are closely associated with purine nucleotide and nucleic acid metabolism in tea plants.  相似文献   

16.
The effect of long-term phosphate (Pi) starvation of up to 3 weeks on the levels of purine nucleotides and related compounds was examined using suspension-cultured Catharanthus roseus cells. Levels of adenine and guanine nucleotides, especially ATP and GTP, were markedly reduced during Pi-starvation. There was an increase in the activity of RNase, DNase, 5'- and 3'-nucleotidases and acid phosphatase, which may participate in the hydrolysis of nucleic acids and nucleotides. Accumulation of adenosine, adenine, guanosine and guanine was observed during the long-term Pi starvation. Long-term Pi starvation markedly depressed the flux of transport of exogenously supplied [8-(14)C]adenosine and [8-(14)C]adenine, but these labelled compounds which were taken up by the cells were readily converted to adenine nucleotides even in Pi-starved cells, in which RNA synthesis from these precursors was significantly reduced. The activities of adenosine kinase, adenine phosphoribosyltransferase and adenosine nucleosidase were maintained at a high level in long-term Pi starved cells.  相似文献   

17.
We studied the metabolic fate of [carbonyl-14C]nicotinamide and [8-(14)C]adenine in segments taken from young and developing leaves, stem, hypocotyls, and roots of a shoot-root type emerging propagule of the mangrove plant Bruguiera gymnorrhiza. Thin-layer chromatography was used together with a bioimaging analyser system. During 4 h of incubation, incorporation of radioactivity from [carbonyl-14C]nicotinamide into NAD and trigonelline was found in all parts of the propagules; the highest incorporation rates into NAD and trigonelline were found in newly emerged stem and young leaves, respectively. Radioactivity from [8-(14)C]adenine was distributed mainly in the salvage products (adenine nucleotides and RNA), and incorporation was less in catabolites (allantoin, allantoic acid, and CO2). Adenine salvage activity was higher in young leaves and stem than in hypocotyls and roots. Over a short time, the effect of 500 mM NaCl on nicotinamide and adenine metabolism indicated that NaCl inhibits both salvage and degradation activities in roots.  相似文献   

18.
Katahira R  Ashihara H 《Planta》2006,225(1):115-126
To find general metabolic profiles of purine ribo- and deoxyribonucleotides in potato (Solanum tuberosum L.) plants, we looked at the in situ metabolic fate of various 14C-labelled precursors in disks from growing potato tubers. The activities of key enzymes in potato tuber extracts were also studied. Of the precursors for the intermediates in de novo purine biosynthesis, [14C]formate, [2-14C]glycine and [2-14C]5-aminoimidazole-4-carboxyamide ribonucleoside were metabolised to purine nucleotides and were incorporated into nucleic acids. The rates of uptake of purine ribo- and deoxyribonucleosides by the disks were in the following order: deoxyadenosine > adenosine > adenine > guanine > guanosine > deoxyguanosine > inosine > hypoxanthine > xanthine > xanthosine. The purine ribonucleosides, adenosine and guanosine, were salvaged exclusively to nucleotides, by adenosine kinase (EC 2.7.1.20) and inosine/guanosine kinase (EC 2.7.1.73) and non-specific nucleoside phosphotransferase (EC 2.7.1.77). Inosine was also salvaged by inosine/guanosine kinase, but to a lesser extent. In contrast, no xanthosine was salvaged. Deoxyadenosine and deoxyguanosine, was efficiently salvaged by deoxyadenosine kinase (EC 2.7.1.76) and deoxyguanosine kinase (EC 2.7.1.113) and/or non-specific nucleoside phosphotransferase (EC 2.7.1.77). Of the purine bases, adenine, guanine and hypoxanthine but not xanthine were salvaged for nucleotide synthesis. Since purine nucleoside phosphorylase (EC 2.4.2.1) activity was not detected, adenine phosphoribosyltransferase (EC 2.4.2.7) and hypoxanthine/guanine phosphoribosyltransferase (EC 2.4.2.8) seem to play the major role in salvage of adenine, guanine and hypoxanthine. Xanthine was catabolised by the oxidative purine degradation pathway via allantoin. Activity of the purine-metabolising enzymes observed in other organisms, such as purine nucleoside phosphorylase (EC 2.4.2.1), xanthine phosphoribosyltransferase (EC 2.4.2.22), adenine deaminase (EC 3.5.4.2), adenosine deaminase (EC 3.5.4.4) and guanine deaminase (EC 3.5.4.3), were not detected in potato tuber extracts. These results suggest that the major catabolic pathways of adenine and guanine nucleotides are AMP → IMP → inosine → hypoxanthine → xanthine and GMP → guanosine → xanthosine → xanthine pathways, respectively. Catabolites before xanthosine and xanthine can be utilised in salvage pathways for nucleotide biosynthesis.  相似文献   

19.
In order to examine the biosynthesis, interconversion, and degradation of purine and pyrimidine nucleotides in white spruce cells, radiolabeled adenine, adenosine, inosine, uracil, uridine, and orotic acid were supplied exogenously to the cells and the overall metabolism of these compounds was monitored. [8‐14C]adenine and [8‐14C]adenosine were metabolized to adenylates and part of the adenylates were converted to guanylates and incorporated into both adenine and guanine bases of nucleic acids. A small amount of [8‐14C]inosine was converted into nucleotides and incorporated into both adenine and guanine bases of nucleic acids. High adenosine kinase and adenine phosphoribosyltransferase activities in the extract suggested that adenosine and adenine were converted to AMP by these enzymes. No adenosine nucleosidase activity was detected. Inosine was apparently converted to AMP by inosine kinase and/or a non‐specific nucleoside phosphotransferase. The radioactivity of [8‐14C]adenosine, [8‐14C]adenine, and [8‐14C]inosine was also detected in ureide, especially allantoic acid, and CO2. Among these 3 precursors, the radioactivity from [8‐14C]inosine was predominantly incorporated into CO2. These results suggest the operation of a conventional degradation pathway. Both [2‐14C]uracil and [2‐14C]uridine were converted to uridine nucleotides and incorporated into uracil and cytosine bases of nucleic acids. The salvage enzymes, uridine kinase and uracil phosphoribosyltransferase, were detected in white spruce extracts. [6‐14C]orotic acid, an intermediate of the de novo pyrimidine biosynthesis, was efficiently converted into uridine nucleotides and also incorporated into uracil and cytosine bases of nucleic acids. High activity of orotate phosphoribosyltransferase was observed in the extracts. A large proportion of radioactivity from [2‐14C]uracil was recovered as CO2 and β‐ureidopropionate. Thus, a reductive pathway of uracil degradation is functional in these cells. Therefore, white spruce cells in culture demonstrate both the de novo and salvage pathways of purine and pyrimidine metabolism, as well as some degradation of the substrates into CO2.  相似文献   

20.
Primary rat cardiomyocyte cultures were utilized as a model for the study of purine nucleotide metabolism in the heart muscle, especially in connection with the mechanisms operating for the conservation of adenine nucleotides. The cultures exhibited capacity to produce purine nucleotides from nonpurine molecules (de novo synthesis), as well as from preformed purines (salvage synthesis). The conversion of adenosine to AMP, catalyzed by adenosine kinase, appears to be the most important physiological salvage pathway of adenine nucleotide synthesis in the cardiomyocytes. The study of the metabolic fate of IMP formed from [14C]formate or [14C]hypoxanthine and that of AMP formed from [14C]adenine or [14C]adenosine revealed that in the cardiomyocyte the main flow in the nucleotide interconversion pathways is from IMP to AMP, whereas the flux from AMP to IMP appeared to be markedly slower. Following synthesis from labeled precursors by either de novo or salvage pathways, most of the radioactivity in purine nucleotides accumulated in adenine nucleotides, and only a small proportion of it resided in IMP. The results suggest that the main pathway of AMP degradation in the cardiomyocyte proceeds through adenosine rather than through IMP. About 90% of the total radioactivity in purines effluxed from the cells during de novo synthesis from [14C]formate or following prelabeling of adenine nucleotides with [14C]adenine were found to reside in hypoxanthine. The activities in cell extracts of AMP 5'-nucleotidase and IMP 5'-nucleotidase, which catalyze nucleotide degradation, and of AMP deaminase, a key enzyme in the purine nucleotide cycle, were low. The nucleotidase activity resembles, and that of the AMP deaminase contrasts the respective enzyme activities in extracts of cultured skeletal-muscle myotubes. The results indicate that in the cardiomyocyte, in contrast to the myotube, the main mechanism operating for conservation of nucleotides is prompt phosphorylation of AMP, rather than operation of the purine nucleotide cycle. The primary cardiomyocyte cultures are a plausible model for the study of purine nucleotide metabolism in the heart muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号