首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has recently emerged as a cancer therapeutic agent because it is capable of preferentially inducing apoptosis in human cancer over normal cells. The majority of human pancreatic cancers, unfortunately, are resistant to TRAIL treatment. Here, we show that the inhibition of caspase-8 cleavage is the most upstream event in TRAIL resistance in pancreatic cancers. TRAIL treatment led to the cleavage of caspase-8 and downstream caspase-9, caspase-3, and DNA fragmentation factor 45 (DFF45) in TRAIL-sensitive pancreatic cancer cell lines (BXPC-3, PACA-2). This caspase-8-initiated caspase cascade, however, was inhibited in TRAIL-resistant pancreatic cancer cell lines (PANC-1, ASPC-1, CAPAN-1, CAPAN-2). The long and short forms of cellular Fas-associated death domain-like interleukin-1beta-converting enzyme-inhibitory protein (c-FLIP(L), c-FLIP(S)) were highly expressed in the TRAIL-resistant as compared to the sensitive cells; knockdown of c-FLIP(L) and c-FLIP(S) by a short hairpin RNA (shRNA) rendered the resistant cells sensitive to TRAIL-induced apoptosis through the cleavage of caspase-8 and activation of the mitochondrial pathway. Receptor-interacting protein (RIP) has been reported in TRAIL-induced activation of NF-kappaB and we show here that knockdown of RIP sensitized the resistant cells to TRAIL-induced apoptosis. These results indicate the role of c-FLIP and RIP in caspase-8 inhibition and thus TRAIL resistance. Treatment of the resistant cells with camptothecin, celecoxib and cisplatin resulted in the downregulation of c-FLIP and caused a synergistic apoptotic effect with TRAIL. These studies therefore suggest that combination treatment with chemotherapy can overcome TRAIL resistance and enhance TRAIL therapeutic efficacy in treating pancreatic cancers.  相似文献   

2.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can trigger apoptosis in some tumor cells but not other tumor cells. To explore the signal transduction events in TRAIL-triggered apoptosis and its modulation in nontransfected tumor cells, we analyzed TRAIL-induced death-inducing signaling complex (DISC) in TRAIL-sensitive and -resistant glioma cells. Caspase-8 and caspase-10 were recruited to the DISC, where they were proteolytically activated to initiate apoptosis in TRAIL-sensitive glioma cells. Caspase-8 and caspase-10 were also recruited to the DISC in TRAIL-resistant cells, but their further activation was inhibited by two antiapoptotic proteins termed cellular Fas-associated death domain-like interleukin-1beta-converting enzyme-inhibitory protein (c-FLIP) and phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes-15kDa (PED/PEA-15). Both long and short forms of c-FLIP were recruited to the DISC, where the long form c-FLIP was cleaved to produce intermediate fragments. Of the three isoforms of PED/PEA-15 proteins, only the doubly phosphorylated form was expressed and recruited to the DISC in TRAIL-resistant cells, indicating that the phosphorylation status of PED/PEA-15 determines its recruitment in the cells. Treatment with calcium/calmodulin-dependent protein kinase inhibitor rescued TRAIL sensitivity in TRAIL-resistant cells, providing a potential new approach to sensitize the cells to TRAIL-induced apoptosis.  相似文献   

3.
Tumor necrosis factor (TNF) apoptosis-inducing ligand (TRAIL), a member of the TNF family, induces apoptosis in many transformed cells. We report TRAIL-induced NF-kappaB activation, concomitant with production of the pro-inflammatory cytokine Interleukin-8 in the relatively TRAIL-insensitive cell line, HEK293. In contrast, TRAIL-induced NF-kappaB activation occurred in HeLa cells only upon pretreatment with the caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-(OMe) fluoromethyl ketone (z-VAD.fmk), indicating that this was due to a caspase-sensitive component of TRAIL-induced NF-kappaB activation. NF-kappaB activation was mediated by the death receptors, TRAIL-R1 and -R2, but not by TRAIL-R3 or -R4 and was only observed in HeLa cells in the presence of z-VAD.fmk. Receptor-interacting protein, an obligatory component of TNF-alpha-induced NF-kappaB activation, was cleaved during TRAIL-induced apoptosis. We show that receptor-interacting protein is recruited to the native TRAIL death-inducing signaling complex (DISC) and that recruitment is enhanced in the presence of z-VAD.fmk, thus providing an explanation for the potentiation of TRAIL-induced NF-kappaB activation by z-VAD.fmk in TRAIL-sensitive cell lines. Examination of the TRAIL DISC in sensitive and resistant cells suggests that a high ratio of c-FLIP to caspase-8 may partially explain cellular resistance to TRAIL-induced apoptosis. Sensitivity to TRAIL-induced apoptosis was also modulated by inhibition or activation of NF-kappaB. Thus, in some contexts, modulation of NF-kappaB activation possibly at the level of apical caspase activation at the DISC may be a key determinant of sensitivity to TRAIL-induced apoptosis.  相似文献   

4.
Fas, upon cross-linking with Fas ligand (FasL) or Fas agonistic antibody, transduces apoptotic yet also proliferative signals, which have been implicated in tumor pathogenesis. In this study, we investigated the molecular mechanisms that control Fas-mediated signaling in glioma cells. Fas agonistic antibody, CH-11, induced apoptosis in sensitive glioma cells through caspase-8 recruitment to the Fas-mediated death-inducing signaling complex (DISC) where caspase-8 was cleaved to initiate apoptosis through a systematic cleavage of downstream substrates. In contrast, CH-11 stimulated cell growth in resistant glioma cells through recruitment of c-FLIP (cellular Fas-associated death domain (FADD)-like interleukin-1beta-converting enzyme (FLICE)-inhibitory protein) to the Fas-mediated DISC. Three isoforms of long form c-FLIP were detected in glioma cells, but only the phosphorylated isoform was recruited to and cleaved into a p43 intermediate form in the Fas-mediated DISC in resistant cells. Calcium/calmodulin-dependent protein kinase II (CaMK II) activity was up-regulated in resistant cells. Treatment of resistant cells with the CaMK II inhibitor KN-93 inhibited CaMK II activity, reduced c-FLIP expression, inhibited c-FLIP phosphorylation, and rescued CH-11 sensitivity. Transfection of CaMK II cDNA in sensitive cells rendered them resistant to CH-11. These results indicated that CaMK II regulates c-FLIP expression and phosphorylation, thus modulating Fas-mediated signaling in glioma cells.  相似文献   

5.
TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is a member of the tumor necrosis factor family that selectively induces apoptosis of cancer cells. However, some cancer cells or subpopulations within cancer cell lines are resistant to TRAIL-induced apoptosis. We developed a retroviral cDNA library-based functional cloning approach to unambiguously identify putative inhibitory genes of TRAIL-induced apoptosis. This effort identified the short splice form of Casper/c-FLIP, Casper-S/c-FLIPs, as a major cellular protein that confers resistance to TRAIL-induced apoptosis. Furthermore, we found that Casper deficient embryonic fibroblasts (EFs) were highly sensitive while their wild-type counterparts were completely resistant to TRAIL-induced apoptosis. Retroviral-mediated transduction of Casper-S/c-FLIPs into Casper(-/-) EFs restored resistance to TRAIL. These data suggest that Casper-S/c-FLIPs is a major cellular inhibitor of TRAIL-induced apoptosis.  相似文献   

6.
TRAIL is a member of the tumor necrosis factor family that selectively induces cancer cell apoptosis. However, gastric cancer cells are insensitive to TRAIL. Our and others studies showed that the inhibition of EGFR pathway activation could increase the sensitivity of TRAIL in cancer cells. But the detailed mechanism is not fully understood. In the present study, compared with TRAIL or cetuximab (an anti-EGFR monoclonal antibody) alone, treatment with the TRAIL/cetuximab combination significantly promoted death receptor 4 (DR4) clustering as well as the translocation of both DR4 and Fas-associated death domain-containing protein (FADD) into lipid rafts. This in turn resulted in caspase-8 cleavage and the formation of the death-inducing signaling complex (DISC) in these lipid rafts. Cholesterol-depletion with methyl-β-cyclodextrin partially prevented DR4 clustering and DISC formation, and thus partially reversed apoptosis induced by the TRAIL/cetuximab dual treatment. These results indicate that cetuximab increases TRAIL-induced gastric cancer cell apoptosis at least partially through the promotion of DISC formation in lipid rafts.  相似文献   

7.
Breast cancers with HER2 amplification have a poorer prognosis than the luminal phenotypes. TRAIL activates apoptosis upon binding its receptors in some but not all breast cancer cell lines. Herein, we investigated the expression pattern of c-FLIP(L) in a cohort of 251 invasive breast cancer tissues and explored its potential role in TRAIL resistance. C-FLIP(L) was relatively high-expressed in HER2-positive breast cancer in comparison with other molecular subtypes, co-expressed with TRAIL death receptors, and inversely correlated with the apoptosis index. Downregulation of c-FLIP(L) sensitized SKBR3 cells to TRAIL-induced apoptosis in a concentration- and time-dependent manner and enhanced the activities and cleavages of caspase-8 and caspase-3, without altering the surface expression of death receptors. Together, our results indicate that c-FLIP(L) promotes TRAIL resistance and inhibits caspase-3 and caspase-8 activation in HER2-positive breast cancer.  相似文献   

8.
Tumor necrosis factor related apoptosis inducing ligand (TRAIL) belongs to the Tumor necrosis factor (TNF) family of death-inducing ligands, and signaling downstream of TRAIL ligation to its receptor(s) remains to be fully elucidated. Components of the death-inducing signaling complex (DISC) and TRAIL signaling downstream of receptor activation were examined in TRAIL - sensitive and -resistant models of human rhabdomyosarcoma (RMS). TRAIL ligation induced DISC formation in TRAIL-sensitive (RD, Rh18, Rh30) and TRAIL-resistant RMS (Rh28, Rh36, Rh41), with recruitment of FADD and procaspase-8. In RD cells, overexpression of dominant-negative FADD (DNFADD) completely abolished TRAIL-induced cell death in contrast to dominant-negative caspase- 8 (DNC8), which only partially inhibited TRAIL-induced apoptosis, growth inhibition, or loss in clonogenic survival. DNC8 did not inhibit the cleavage of Bid or the activation of Bax. Overexpression of Bcl-2 or Bcl-xL inhibited TRAIL-induced apoptosis, growth inhibition, and loss in clonogenic survival. Bcl-2 and Bcl-xL, but not DNC8, inhibited TRAIL-induced Bax activation. Bcl-xL did not inhibit the early activation of caspase-8 (<4 h) but inhibited cleavage of Bid, suggesting that Bid is cleaved downstream of the mitochondria, independent of caspase-8. Exogenous addition of sphingosine also induced activation of Bax via a caspase-8-and Bid-independent mechanism. Further, inhibition of sphingosine kinase completely protected cells from TRAIL-induced apoptosis. Data demonstrate that in RMS cells, the TRAIL signaling pathway circumvents caspase-8 activation of Bid upstream of the mitochondria and that TRAIL acts at the level of the mitochondria via a mechanism that may involve components of the sphingomyelin cycle.  相似文献   

9.
TNF-related apoptosis-inducing ligand or Apo2L (Apo2L/TRAIL) is a promising anti-cancer drug owing to its ability to trigger apoptosis by binding to TRAIL-R1 or TRAIL-R2, two membrane-bound receptors that are often expressed by tumor cells. TRAIL can also bind non-functional receptors such as TRAIL-R4, but controversies still exist regarding their potential to inhibit TRAIL-induced apoptosis. We show here that TRAIL-R4, expressed either endogenously or ectopically, inhibits TRAIL-induced apoptosis. Interestingly, the combination of chemotherapeutic drugs with TRAIL restores tumor cell sensitivity to apoptosis in TRAIL-R4-expressing cells. This sensitization, which mainly occurs at the death-inducing signaling complex (DISC) level, through enhanced caspase-8 recruitment and activation, is compromised by c-FLIP expression and is independent of the mitochondria. Importantly, TRAIL-R4 expression prevents TRAIL-induced tumor regression in nude mice, but tumor regression induced by TRAIL can be restored with chemotherapy. Our results clearly support a negative regulatory function for TRAIL-R4 in controlling TRAIL signaling, and unveil the ability of TRAIL-R4 to cooperate with c-FLIP to inhibit TRAIL-induced cell death.  相似文献   

10.
Regulation of the apoptotic threshold is of great importance in the homeostasis of both differentiating and fully developed organ systems. Triggering differentiation has been employed as a strategy to inhibit cell proliferation and accelerate apoptosis in malignant cells, in which the apoptotic threshold is often characteristically elevated. To better understand the mechanisms underlying differentiation-mediated regulation of apoptosis, we have studied death receptor responses during erythroid differentiation of K562 erythroleukemia cells, which normally are highly resistant to tumor necrosis factor (TNF) alpha-, FasL-, and TRAIL-induced apoptosis. However, upon hemin-mediated erythroid differentiation, K562 cells specifically lost their resistance to TNF-related apoptosis-inducing ligand (TRAIL), which efficiently killed the differentiating cells independently of mitochondrial apoptotic signaling. Concomitantly with the increased sensitivity, the expression of both c-FLIP splicing variants, c-FLIP(L) and c-FLIP(S), was downregulated, resulting in an altered caspase 8 recruitment and cleavage in the death-inducing signaling complex (DISC). Stable overexpression of both c-FLIP(L) and c-FLIP(S) rescued the cells from TRAIL-mediated apoptosis with isoform-specific effects on DISC-recruited caspase 8. Our results show that c-FLIP(L) and c-FLIP(S) potently control TRAIL responses, both by distinct regulatory features, and further imply that the differentiation state of malignant cells determines their sensitivity to death receptor signals.  相似文献   

11.
Protein phosphatase 2A (PP2A) is the major serine-threonine phosphatase that regulates a number of cell signaling pathways. PP2A activity is controlled partially through protein degradation; however, the underlying mechanism is not fully understood. Here we show that PP2A/C, a catalytic subunit of PP2A, is degraded by the Cullin3 (Cul3) ligase-mediated ubiquitin-proteasome pathway. In response to death receptor signaling by tumor-necrosis factor-related apoptosis-inducing ligand (TRAIL), PP2A/C, caspase-8 and Cul3, a subunit of the cullin family of E3 ligases, are recruited into the death-inducing signaling complex (DISC) where the Cul3 ligase targets PP2A/C for ubiquitination and subsequent degradation. Functionally, knockdown of PP2A/C expression by siRNA or pharmacological inhibition of PP2A activity increases TRAIL-induced apoptosis. In cancer cells that have developed acquired TRAIL resistance, PP2A phosphatase activity is increased, and PP2A/C protein is resistant to TRAIL-induced degradation. Thus, this work identifies a new mechanism by which PP2A/C is regulated by Cul3 ligase-mediated degradation in response to death receptor signaling and suggests that inhibition of PP2A/C degradation may contribute to resistance of cancer cells to death receptor-induced apoptosis.  相似文献   

12.
Many tumor cell types are sensitive to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Incubation of TRAIL-sensitive cells with TRAIL invariably leads to resistant survivors even when high doses of TRAIL are used. Because the emergence of resistance to apoptosis is a major concern in successful treatment of cancer, and TRAIL survivors may contribute to therapeutic failure, we investigated potential resistance mechanisms. We selected TRAIL-resistant SW480 human colon adenocarcinoma cells by repeatedly treating them with high and/or low doses of TRAIL. The resulting TRAIL-resistant clones were not cross-resistant to Fas or paclitaxel. Expression of modulators of apoptosis was not changed in the resistant cells, including TRAIL receptors, cFLIP, Bax, Bid, or IAP proteins. Surprisingly, we found that DISC formation was deficient in multiple selected TRAIL-resistant clones. DR4 was not recruited to the DISC upon TRAIL treatment, and caspase-8 was not activated at the DISC. Although total cellular DR4 mRNA and protein were virtually identical in TRAIL-sensitive parental and TRAIL-resistant clones, DR4 protein expression on the cell surface was essentially undetectable in the TRAIL-resistant clones. Moreover, exogenous DR4 and KILLER/DR5 were not properly transported to the cell surface in the TRAIL-resistant cells. Interestingly, TRAIL-resistant cells were resensitized to TRAIL by tunicamycin pretreatment, which increased cell surface expression of DR4 and KILLER/DR5. Our data suggest that tumor cells may become resistant to TRAIL through regulation of the death receptor cell surface transport and that resistance to TRAIL may be overcome by the glycosylation inhibitor/endoplasmic reticulum stress-inducing agent tunicamycin.  相似文献   

13.
Apo2 ligand (Apo2L)/TRAIL induces apoptosis of cancer cells that express the specific receptors while sparing normal cells. Because the tumor microenvironment protects myeloma from chemotherapy, we investigated whether hemopoietic stroma induces resistance to Apo2L/TRAIL apoptosis in this disease. Apo2L/TRAIL-induced death was diminished in myeloma cell lines (RPMI 8226, U266, and MM1s) directly adhered to a human immortalized HS5 stroma cell line but not adhered to fibronectin. In a Transwell assay, with myeloma in the upper well and HS5 cells in the lower well, Apo2L/TRAIL apoptosis was reduced when compared with cells exposed to medium in the lower well. Using HS5 and myeloma patients' stroma-conditioned medium, we determined that soluble factor(s) produced by stroma-myeloma interactions are responsible for a reversible Apo2/TRAIL apoptosis resistance. Soluble factor(s) attenuated procaspase-8, procaspase-3, and poly(ADP-ribose) polymerase cleavage and diminished mitochondrial membrane potential changes without affecting Bcl-2 family proteins and/or Apo2L/TRAIL receptors. Soluble factor(s) increased the baseline levels of the anti-apoptotic protein c-FLIP in all cell lines tested. Inhibition of c-FLIP by means of RNA interference increased Apo2/TRAIL sensitivity in RPMI 8226 cells. Unlike direct adhesion to fibronectin, soluble factor(s) have no impact on c-FLIP redistribution within cellular compartments. Cyclohexamide restored Apo2L/TRAIL sensitivity in association with down-regulation of c-FLIP, suggesting that c-FLIP synthesis, not intracellular traffic, is essential for soluble factor(s) to regulate c-FLIP. Additionally, IL-6 conferred resistance to Apo2L/TRAIL-mediated apoptosis in association with increased c-FLIP levels. In conclusion, the immune cytotoxic effect of Apo2L/TRAIL can be restored at least in part by c-FLIP pathway inhibitors.  相似文献   

14.
Hepatitis C virus (HCV) is a major human pathogen causing chronic liver disease, which leads to cirrhosis of liver and hepatocellular carcinoma. The HCV core protein, a viral nucleocapsid, has been shown to affect various intracellular events, including cell proliferation and apoptosis. However, the precise mechanisms of the effects are not fully understood. In this study, we show that HCV core protein sensitizes human hepatocellular carcinoma cell line, Huh7, conferred sensitivity to TRAIL-, but not Fas ligand-mediated apoptosis. Huh7 cells are resistant to TRAIL, despite the induction of caspase-8 after TRAIL engagement. However, HCV core protein induces TRAIL apoptosis signaling via sequential induction of caspase-8, Bid cleavage, activation of mitochondrial pathway, and effector caspase-3. HCV core protein also induces activation of caspase-9 after TRAIL engagement, and the induction of TRAIL sensitivity by HCV core protein could be reversed by caspase-9 inhibitor. Therefore, the HCV core protein-induced TRAIL-mediated apoptosis is dependent upon activation of caspase-8 downstream pathway to convey the death signal to mitochondria, leading to activation of mitochondrial signaling pathway and breaking the apoptosis resistance. These results combined indicate that the HCV core protein enhances TRAIL-, but not Fas ligand-mediated apoptotic cell death in Huh7 cells via a mechanism dependent on the activation of mitochondria apoptosis signaling pathway. These results suggest that HCV core protein may have a role in immune-mediated liver cell injury by modulation of TRAIL-induced apoptosis.  相似文献   

15.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selective killing of cancer cells underlines its anticancer potential. However, poor tolerability and resistance underscores the need to identify cancer-selective TRAIL-sensitizing agents. Apigenin, a dietary flavonoid, sensitizes lung cancer cell lines to TRAIL. It remains unknown, however, whether apigenin sensitizes primary lung cancer cells to TRAIL and its underlying mechanisms. Here we show that apigenin reprograms alternative splicing of key TRAIL/death-inducing-signaling-complex (DISC) components: TRAIL Death Receptor 5 (DR5) and cellular-FLICE-inhibitory-protein (c-FLIP) by interacting with the RNA-binding proteins hnRNPA2 and MSI2, resulting in increased DR5 and decreased c-FLIPS protein levels, enhancing TRAIL-induced apoptosis of primary lung cancer cells. In addition, apigenin directly bound heat shock protein 70 (Hsp70), promoting TRAIL/DISC assembly and triggering apoptosis. Our findings reveal that apigenin directs alternative splicing and inhibits Hsp70 enhancing TRAIL anticancer activity. These findings underscore impactful synergies between diet and cancer treatments opening new avenues for improved cancer treatments.Subject terms: Cancer, Molecular biology  相似文献   

16.
Tumor necrosis factor superfamily member TRAIL/Apo-2L has recently been shown to induce apoptosis in transformed and cancer cells. Some prostate cancer cells express constitutively active Akt/protein kinase B due to a complete loss of lipid phosphatase PTEN gene, a negative regulator of phosphatidylinositol 3-kinase pathway. Constitutively active Akt promotes cellular survival and resistance to chemotherapy and radiation. We have recently noticed that some human prostate cancer cells are resistant to TRAIL. We therefore examined the intracellular mechanisms of cellular resistance to TRAIL. The cell lines expressing the highest level of constitutively active Akt were more resistant to undergo apoptosis by TRAIL than those expressing the lowest level. Down-regulation of constitutively active Akt by phosphatidylinositol 3-kinase inhibitors, wortmannin and LY294002, reversed cellular resistance to TRAIL. Treatment of resistant cells with cycloheximide (a protein synthesis inhibitor) rendered cells sensitive to TRAIL. Transfecting dominant negative Akt decreased Akt activity and increased TRAIL-induced apoptosis in cells with high Akt activity. Conversely, transfecting constitutively active Akt into cells with low Akt activity increased Akt activity and attenuated TRAIL-induced apoptosis. Inhibition of TRAIL sensitivity occurs at the level of BID cleavage, as caspase-8 activity was not affected. Enforced expression of anti-apoptotic protein Bcl-2 or Bcl-X(L) inhibited TRAIL-induced mitochondrial dysfunction and apoptosis. We therefore identify Akt as a constitutively active kinase that promotes survival of prostate cancer cells and demonstrate that modulation of Akt activity, by pharmacological or genetic approaches, alters the cellular responsiveness to TRAIL. Thus, TRAIL in combination with agents that down-regulate Akt activity can be used to treat prostate cancer.  相似文献   

17.
In this study, we showed the existence of a positive correlation between the amount of human immunodeficiency virus-type 1 (HIV-1) RNA in HIV-1 seropositive subjects and the plasma levels of TRAIL. Since it has been previously demonstrated that HIV-1 Tat protein up-regulates the expression of TRAIL in monocytic cells whereas tat-expressing lymphoid cells are more resistant to TRAIL cytotoxicity, we next investigated the effect of Tat on the expression/activity of both apical caspase-8 and -10, which play a key role in mediating the initial phases of apoptosis by TRAIL, and c-FLIP. Jurkat lymphoblastoid human T cell lines stably transfected with a plasmid expressing wild-type (HIV-1) tat gene showed normal levels of caspase-8 but significantly decreased levels of caspase-10 at both mRNA and protein levels with respect to Jurkat transfected with the control plasmid or with a mutated (cys22) non-functional tat cDNA. A significant decrease of caspase-10 expression/activity was also observed in transient transfection experiments with plasmid carrying tat cDNA. Moreover, c-FLIP(L) and c-FLIP(S) isoforms were up-regulated in tat-expressing cells at both mRNA and protein level in comparison with control cells. Taken together, these results provide a molecular basis to explain the resistance of tat-expressing Jurkat cells to apoptosis induced by TRAIL and, possibly, to other death-inducing ligands.  相似文献   

18.
Tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) exhibits potent antitumour activity upon systemic administration in mice without showing the deleterious side effects observed with other apoptosis-inducing members of the TNF family such as TNF and CD95L. TRAIL may, thus, have great potential in the treatment of human cancer. However, about 60% of tumour cell lines are not sensitive to TRAIL. To evaluate the mechanisms of tumour resistance to TRAIL, we investigated hepatocellular carcinoma (HCC) cell lines that exhibit differential sensitivity to TRAIL. Pretreatment with chemotherapeutic drugs, for example, 5-fluorouracil (5-FU), rendered the TRAIL-resistant HCC cell lines sensitive to TRAIL-induced apoptosis. Analysis of the TRAIL death-inducing signalling complex (DISC) revealed upregulation of TRAIL-R2. Caspase-8 recruitment to and its activation at the DISC were substantially increased after 5-FU sensitisation, while FADD recruitment remained essentially unchanged. 5-FU pretreatment downregulated cellular FLICE-inhibitory protein (cFLIP) and specific cFLIP downregulation by small interfering RNA was sufficient to sensitise TRAIL-resistant HCC cell lines for TRAIL-induced apoptosis. Thus, a potential mechanism for TRAIL sensitisation by 5-FU is the increased effectiveness of caspase-8 recruitment to and activation at the DISC facilitated by the downregulation of cFLIP and the consequent shift in the ratio of caspase-8 to cFLIP at the DISC.  相似文献   

19.
TNF-related apoptosis-inducing ligand (TRAIL) is a pro-apoptotic cytokine that is capable of inducing apoptosis in a wide variety of cancer cells but not in normal cells. Although many cancer cells are sensitive to TRAIL-induced apoptosis, chronic myeloid leukemia (CML) develops resistance to TRAIL. In this study, we investigated whether apicidin, a novel histone deacetylase inhibitor, could overcome the TRAIL resistance in CML-derived K562 cells. Compared to treatment with apicidin or TRAIL alone, cotreatment with apicidin and TRAIL-induced apoptosis synergistically in K562 cells. This combination led to activation of caspase-8 and Bcl-2 interacting domain (Bid), resulting in the cytosolic accumulation of cytochrome c from mitochondria as well as an activation of caspase-3. Treatment with apicidin resulted in down-regulation of Bcr-Abl and inhibition of its downstream target, PI3K/AKT-NF-κB pathway. In addition, apicidin decreased the level of NF-κB-dependent Bcl-xL, leading to caspase activation and Bid cleavage. These results suggest that apicidin may sensitize K562 cells to TRAIL-induced apoptosis through caspase-dependent mitochondrial pathway by regulating expression of Bcr-Abl and its related anti-apoptotic proteins. Therefore, the present study suggests that combination of apicidin and TRAIL may be an effective strategy for treating TRAIL-resistant Bcr-Abl expressing CML cells.  相似文献   

20.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis through binding to TRAIL receptors, death receptor 4 (DR4), and DR5. TRAIL has potential therapeutic value against cancer because of its selective cytotoxic effects on several transformed cell types. Fucosylation of proteins and lipids on the cell surface is a very important posttranslational modification that is involved in many cellular events. Recently, we found that a deficiency in GDP-mannose-4,6-dehydratase (GMDS) rendered colon cancer cells resistant to TRAIL-induced apoptosis, resulting in tumor development and metastasis by escape from tumor immune surveillance. GMDS is an indispensable regulator of cellular fucosylation. In this study, we investigated the molecular mechanism of inhibition of TRAIL signaling by GMDS deficiency. DR4, but not DR5, was found to be fucosylated; however, GMDS deficiency inhibited both DR4- and DR5-mediated apoptosis despite the absence of fucosylation on DR5. In addition, GMDS deficiency also inhibited CD95-mediated apoptosis but not the intrinsic apoptosis pathway induced by anti-cancer drugs. Binding of TRAIL and CD95 ligand to their cognate receptors primarily leads to formation of a complex comprising the receptor, FADD, and caspase-8, referred to as the death-inducing signaling complex (DISC). GMDS deficiency did not affect formation of the primary DISC or recruitment to and activation of caspase-8 on the DISC. However, formation of secondary FADD-dependent complex II, comprising caspase-8 and cFLIP, was significantly inhibited by GMDS deficiency. These results indicate that GMDS regulates the formation of secondary complex II from the primary DISC independent of direct fucosylation of death receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号