首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the effect of R5020, a synthetic progestin, on the biosynthesis of cellular proteins extracted from the MCF7 and T47D human breast cancer cells, using gel electrophoresis. R5020 stimulates the synthesis, as measured after [35S]-methionine labelling, and the accumulation, as shown by silver staining, of a protein of molecular weight approximately equal to 250,000. The increase of the labelled 250-kilodalton protein was rapid (3 hours) and after 3 days this protein represented approximately equal to 6% of the total cellular proteins (approximately equal to 1 microgram/150,000 cells). The induction of the 250-kilodalton protein was obtained by physiologically active concentrations of several progestins and high concentrations of 5 alpha-dihydrotestosterone but not by estradiol or dexamethasone. It was inhibited by R486 , a progestin antagonist, but not by flutamide, an androgen antagonist. These results indicate a mediation by the progesterone receptor. The 250-kilodalton protein appears to be an excellent probe to study in cell culture the mechanism of action of progestin on human cells.  相似文献   

2.
R5020, a synthetic progestin, regulates the production of [35S]methionine-labeled proteins released into the medium by T47D human breast cancer cells in culture, as measured by trichloroacetic acid precipitation and dodecyl hydrogen sulfate sodium salt-polyacrylamide gel electrophoresis. Two contrasting responses were observed: (a) a rapid and specific accumulation in the medium of a newly synthesized protein of molecular weight 48,000 and (b) a subsequent general inhibition of the release of proteins within the first 6 days of treatment while the cell number was not altered. These responses were triggered by physiologically active concentrations of progestins (progesterone, R5020, medroxyprogesterone acetate) but not by other classes of steroids, and were not observed in a progesterone receptor negative cell line (BT20), indicating that they were mediated by the progesterone receptor. A progestin antagonist, RU38,486, inhibited the production of the 48-kilodalton released protein. The production of androgen-regulated proteins (43 kilodaltons, 18 kilodaltons) was also increased by dihydrotestosterone and higher concentrations of R5020. These results show that progestins specifically regulate the production of proteins in cell culture. Subsequently, R5020 also inhibit the growth of T47D cells in the presence of estradiol (Vignon, F., Bardon, S., Chalbos, D., and Rochefort, H. (1983) J. Clin. Endocrinol. Metab. 56, 1124-1130), suggesting that the proteins released into the medium may be related to the control of cell proliferation.  相似文献   

3.
In the present investigation the influence of androgens and progestins on the FSH modulation of progesterone biosynthesis was studied in cultured rat granulosa cells. Cells obtained from the ovaries of immature estrogen treated rats were cultured for three days in serum free medium or in medium supplemented with FSH or CPA, with or without reduced androgen DHT or the synthetic progestin R5020 alone or in combination with the anti-androgen CPA. Treatment with FSH increased pregnenolone, progesterone and 20 alpha-OHP accumulation in the culture medium 20-, 14- and 7-fold, respectively. Furthermore FSH increased the activity of the enzyme 3 beta-HSD. Concurrent treatment with DHT or R5020 augmented the FSH stimulated steroidogenesis of cultured cells. The androgen enhancement of FSH stimulated steroidogenesis of cultured granulosa cells was blocked by concomitant treatment with CPA, whereas treatment of cultures with anti-androgen did not affect the stimulatory effect of the synthetic progestin R5020.  相似文献   

4.
We have identified receptors for glucocorticoids, progestins, and androgens in a human breast tumor cell line (MCF-7) known to have estrogen receptor. Sucrose density gradients show that MCF-7 cytosol contains approximately 100 fm/mg protein estradiol (E2-3H) receptor, more than 300 fm/mg protein progesterone receptor (measured with R5020-3H), about 40 fm/mg protein 5alpha-dihydrotestosterone (5alpha-DHT-3H) receptor, and 800 fm/mg glucocorticoid receptor (measured with dexamethasone-3H). Dissociation constants obtained by Scatchard analyses were approximately 0.6 x 10(-10)M (E2), 1 x 10(-9)M (R5020), 2.8 x 10(-10)M (5alpha-DHT) and 8 x 10(-9)M (dexamethasone). No cross competition was found for estrogen receptor, but progestins competed for androgen and glucocorticoid binding. The androgen, but not the glucocorticoid, partially competed for R5020 binding to progesterone receptor. This first demonstration of 4 classes of steroid receptors in human breast cancer means that MCF-7 may be an excellent in vitro model for studying the mechanism of tumor response to endocrine therapy as well as the complex relationships between binding and biological actions of these hormones.  相似文献   

5.
Insulin-like growth factor-I (IGF-I) receptors are present in breast cancer cells and may play a role in breast cancer cell growth. We have studied the effect of progestins on IGF-I receptors in T47D human breast cancer cells. T47D cells constitutively express high levels of progesterone receptors and are a model for studying the regulation of cellular functions by progestins. Treatment of T47D cells with either progesterone or the synthetic progestin promegestone (R5020) decreased IGF-I receptor content by approximately 50%, as measured by Scatchard analysis and receptor biosynthesis studies. In contrast to progestins, estradiol, dexamethasone, and dihydrotestosterone did not influence IGF-I receptor content. No effect of R5020 was seen after 12 h of incubation, a near-maximal effect was seen after 24 h, and greatest effects were seen after 72 h. R5020 decreased IGF-I receptor mRNA abundance, indicating that progestins acted at the level of gene expression. However, progestins also increased the secretion of IGF-II, a ligand for the IGF-I receptor. In contrast to IGF-II, T47D cells did not express IGF-I. The addition of exogenous IGF-II to T47D cells down-regulated both IGF-I receptor binding and IGF-I receptor mRNA abundance. This study indicates, therefore, that progestins regulate IGF-I receptors in breast cancer cells and suggests that this regulation occurs via an autocrine pathway involving enhanced IGF-II secretion.  相似文献   

6.
A 24 hr incubation of T-47D human breast cancer cells with R5020, a synthetic progestin, resulted in a 200-250% increase in the specific binding of human growth hormone (hGH) and epidermal growth factor (EGF) by these cells. This effect was specific for progestins in that similar responses were observed with progesterone, medroxyprogesterone acetate and ORG 2058 but no significant increases in hGH or EGF binding were observed in cells incubated with testosterone, estradiol or hydrocortisone. Increased binding was due to an increase in the concentration of receptors (hGH, control = 6,490 +/- 500, progestin treated = 13,180 +/- 3,270 sites/cell; EGF, control = 33,380 +/- 7,410, progestin treated = 67,460 +/- 20,330 sites/cell) while the affinity constants for the hormone-receptor interactions were unchanged by progestin treatment. The specific binding of insulin, calcitonin, transferrin and concanavalin A was unaffected by these treatments. It is concluded that expression of hGH and EGF receptors in this breast cancer cell line is regulated by progestins.  相似文献   

7.
Androgen signaling, mediated by the androgen receptor (AR), is a critical factor influencing growth of normal and malignant breast cells. Given the increasing use of exogenous androgens in women, a better understanding of androgen action in the breast is essential. This study compared the effects of 5alpha-dihydrotestosterone (DHT) and a synthetic androgen, mibolerone, on estradiol (E(2))-induced proliferation of breast cancer cells. DHT modestly inhibited E(2)-induced proliferation and mibolerone significantly inhibited proliferation in T-47D cells. The effects of both androgens could be reversed by an AR antagonist, suggesting that their actions were mediated, in part, by AR. Whereas high physiological doses (10-100nM) of DHT reduced E(2)-mediated induction of the estrogen-regulated gene progesterone receptor (PR) to basal levels, mibolerone at lower doses (1nM) eliminated PR expression, suggesting that mibolerone may also act via the PR. In the AR positive, PR-negative MCF-7 cells, mibolerone had modest effects on E(2)-induced proliferation, but was a potent inhibitor of proliferation in the AR positive, PR positive MCF-7M11 PRA cells. The effects of mibolerone in breast cancer cells were similar to those of the progestin, medroxyprogesterone acetate. Our results demonstrate that mibolerone can have both androgenic and progestagenic actions in breast cancer cells.  相似文献   

8.
9.
10.
11.
This study documents a biphasic change in the rate of cell cycle progression and proliferation of T-47D human breast cancer cells treated with synthetic progestins, consisting of an initial transient acceleration in transit through G1, followed by cell cycle arrest and growth inhibition. Both components of the response were mediated via the progesterone receptor. The data are consistent with a model in which the action of progestins is to accelerate cells already progressing through G1, which are then arrested early in G1 after completing a round of replication, as are cells initially in other phases of the cell cycle. Such acceleration implies that progestins act on genes or gene products which are rate limiting for cell cycle progression. Increased production of epidermal growth factor and transforming growth factor alpha, putative autocrine growth factors in breast cancer cells, does not appear to account for the initial response to progestins, since although the mRNA abundance for these growth factors is rapidly induced by progestins, cells treated with epidermal growth factor or transforming growth factor alpha did not enter S phase until 5 to 6 h later than those stimulated by progestin. The proto-oncogenes c-fos and c-myc were rapidly but transiently induced by progestin treatment, paralleling the well-known response of these genes to mitogenic signals in other cell types. The progestin antagonist RU 486 inhibited progestin regulation of both cell cycle progression and c-myc expression, suggesting that this proto-oncogene may participate in growth modulation by progestins.  相似文献   

12.
Progestins have recently been shown to augment gonadotropin-stimulated progesterone and 20 alpha-hydroxypregn-4-en-3-one (20 alpha-OH-P) biosynthesis in cultured rat granulosa cells. The mechanism by which progestins autoregulate ovarian progestin biosynthesis was investigated by studying the modulation of pregnenolone biosynthesis as well as the activities of the enzymes 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) and 20 alpha-hydroxysteroid dehydrogenase (20 alpha-HSD). Granulosa cells obtained from immature hypophysectomized, estrogen-treated rats were cultured with FSH and/or progestins. Pregnenolone production was measured in the presence of cyanoketone (10(-6) M) to inhibit 3 beta-HSD activity. Enzymatic activities of 3 beta-HSD and 20 alpha-HSD were determined in cell homogenates by direct enzyme assays. FSH stimulated pregnenolone production, while treatment with progesterone or R5020 alone was ineffective. Concomitant treatment with the progestins further enhanced FSH-stimulated pregnenolone production in a dose-dependent manner with minimal effective doses of 10(-8) and 10(-7) M for R5020 and progesterone, respectively. In FSH-primed cells, LH increased pregnenolone accumulation, and concomitant treatment with R5020 also enhanced the LH action. Furthermore, the gonadotropins stimulated the activity of 3 beta-HSD, and this effect was further enhanced by concomitant treatment with either R5020 or progesterone in a dose-dependent manner. In addition, the 20 alpha-HSD activities were enhanced by progestins in cells treated with FSH but not with LH. Thus, both natural and synthetic progestins stimulate the gonadotropin-induced progesterone production in cultured granulosa cells via enhancing the 3 beta-HSD enzyme as well as pregnenolone biosynthesis.  相似文献   

13.
In order to investigate further the mechanisms associated with growth inhibition of human breast cancer cells by progestins and nonsteroidal antiestrogens, their effect on c-myc gene expression in T-47D-5 and T-47D cells has been investigated. The c-myc mRNA levels were differentially regulated by the synthetic progestin, medroxyprogesterone acetate and the nonsteroidal antiestrogen, monohydroxytamoxifen, in both cell lines. Antiestrogen treatment caused a persistent decrease in c-myc mRNA levels while the progestin caused a more complex response. Initially c-myc mRNA levels increased approx. 2-fold, this was followed by a decrease and then partial recovery. The end result, however, of each of these treatments is decreased cell number.  相似文献   

14.
A synthetic progestin, R5020, was used to identify cytoplasmic progestin receptors in the hypothalamuspreoptic area (HPOA) of ovariectomized mice. These high-affinity receptors exhibited an apparent dissociation constant of approx. 1 nM. The receptors were specific for progestins. [3H]R5020 binding was inhibited by more than 50% with a 50-fold excess of either radioinert R5020 or progesterone. 5 alpha-Dihydroprogesterone inhibited binding to a lesser extent. 3 alpha-Hydroxy-5 alpha-pregnane-20-one and cortisol did not compete for [3H]R5020 binding. Administration of estradiol benzoate (10 micrograms), 48 h prior to death, resulted in a 54% increase in the HPOA progestin receptor concentration when compared to oil-injected controls. These data demonstrate that there are specific and saturable cytoplasmic progestin receptors in the mouse HPOA and that the concentration of these receptors is increased after estrogen treatment.  相似文献   

15.
The human endometrial cancer cell line, IK-90 cells, contains estrogen-independent progesterone receptors (PR) and is progestin sensitive. Accumulation of glycogen in the cytoplasm of IK-90 cells as well as growth inhibition of the cells in response to progestins are observed. In the present study, the effects of RU486, a progestin antagonist, on IK-90 cells were investigated in a serum-supplemented medium. Scatchard plot analysis of cytoplasmic binding data in the cells revealed a high affinity binding site for RU486 (Kd, 2.6 nM) with maximum binding sites of 169 fmol/mg protein. However, the binding ability to DNA-cellulose of heat activated [3H]RU486-PR complexes was lower when compared with that of the progestin agonist [3H]R5020-PR complexes, suggesting a decrease in progestin activity of RU486 in IK-90 cells. The addition of 1 microM RU486 to culture medium produced periodic acid-Schiff-positive granules in the cytoplasm of the cells. On the other hand, RU486 (1 nM-1 microM) did not significantly inhibit the growth of cells. However, RU486 (0.1-1 microM) totally prevented the growth-inhibitory effect of R5020 (0.1-1 microM) on IK-90 cells. In conclusion, RU486, an antiprogestin, had a dual activity both a progestin antagonist and weak agonist in human endometrial cancer cells, which was not mediated through the estrogen receptor system.  相似文献   

16.
We have examined the effects of estrogen and progestin agonist and antagonist ligands on regulation of progesterone receptor (PR) protein and mRNA levels in a variety of human breast cancer cell lines. By Northern blot analysis, using human PR cDNA probes, PR mRNA in T47D and MCF-7 cells appears as five species of approximately 11.4, 5.8, 5.3, 3.5, and 2.8 kilobases. PR mRNA species are not detected in the PR protein-negative breast cancer cell lines MDA-MB-231 and LY2. T47D cells contain high levels of PR mRNA and protein (detected by hormone binding assay or Western blot analysis), and the PR protein and mRNA content of T47D cells are reduced to about 10% of the control level within 48 h of treatment with 10 nM promegestone; 17, 21-dimethyl-19-nor-pregna-4,9-diene-3, 20-dione (R5020) or 16 alpha-ethyl-21-hydroxy-19-nor-pregn-4-ene-3,20-dione (ORG2058), both potent progestins. In contrast, treatment of T47D cells with the antiprogestin 17 beta-hydroxy-11 beta-[4-dimethylaminophenyl]-17 alpha-(1-propynyl)-estra- 4, 9-dien-3-one) (RU38486) reduces PR protein and mRNA levels only transiently. PR protein and mRNA are virtually undetectable in control MCF-7 cells grown in the absence of estrogens. When estradiol is administered to MCF-7 cells, the PR mRNA and protein levels increase gradually and proportionately (10- or 40-fold, respectively, in 3 days).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The effect of progesterone on the differentiation of the 3T3-L1 preadipocytes was investigated and compared with other sex steroids (estradiol and testosterone), with cortisol, with the synthetic progestin R5020 and with the progestin/glucocorticoid antagonist RU38486. At 10−8 M, progesterone stimulated the activity of glycerol-3-phosphate dehydrogenase and triglyceride deposition. Progesterone, R5020, cortisol, and RU38486 increased triglycerides about 2-fold at 10−7 M. Only minimal effects were observed with testosterone and estradiol even at 10−6 M. When the cells were cultured in presence of 10−5 M metyrapone the effect of progesterone was unchanged, suggesting that the progesterone was not metabolized to a glucocorticoid. Progesterone, R5020 and RU38486 competed efficiently with [3H]dexamethasone for the glucocorticoid receptor in 3T3-L1 cytosol. These results indicate a significant, reproducible dose-dependent effect of progestins on differentiation of the preadipocytes, which appears to be mediated via the glucocorticoid receptor.  相似文献   

18.
Previously, we have shown that progestins both stimulate proliferation of the progesterone receptor (PR)-rich human breast cancer cell line T47D and protect from cell death, in charcoal-stripped serum-containing medium. To lessen the variability inherent in different preparations of serum, we decided to further characterize progestin inhibition of cell death using serum starvation to kill the cells, and find that progestins protect from serum-starvation-induced apoptosis in T47D cells. This effect exhibits specificity for progestins and is inhibited by the antiprogestin RU486. While progestin inhibits cell death in a dose–responsive manner at physiological concentrations, estradiol-17β surprisingly does not inhibit cell death at any concentration from 0.001 nM to 1 μM. Progestin inhibition of cell death also occurs in at least two other human breast cancer cell lines, one with an intermediate level of PR, MCF-7 cells, and, surprisingly, one with no detectable level of PR, MDA-MB-231 cells. Further, we have found progestin inhibition of cell death caused by the breast cancer chemotherapeutic agents doxorubicin and 5-fluorouracil. These data are consistent with the building body of evidence that progestins are not the benign hormones for breast cancer they have been so long thought to be, but may be harmful both for undiagnosed cases and those undergoing treatment.  相似文献   

19.
Our laboratory has previously reported that progestins stimulate growth of the human breast cancer cell line T47D. In an attempt to probe further into this stimulation, we are investigating progestin effects on thymidine kinase (EC 2.7.1.21), an enzyme known to be involved in growth regulation. This report relates our finding that progestins stimulate thymidine kinase activity, at physiological progestin concentrations, in a dose-responsive manner. Estradiol-17 beta also stimulates, but testosterone, hydrocortisone and aldosterone do not. The antiprogestin RU486 inhibits progestin stimulation, but also stimulates on its own. Maximal by 24 h, the progestin stimulation then falls off with time. Experiments with actinomycin D and cycloheximide suggest that the thymidine kinase stimulation depends on new RNA and protein synthesis. These data shed further light on progestin stimulation of the growth of human breast cancer. To our knowledge, this is the first report of progestin stimulation of thymidine kinase in human breast cancer cells.  相似文献   

20.
Our laboratory has previously reported that progestins stimulate growth of the human breast cancer cell line T47D. In an attempt to probe further into this stimulation, we are investigating progestin effects of thymidine kinase (EC 2.7.1.21), an enzyme known to be involved in growth regulation. This report relates our finding that progestins stimulate thymidine kinase activity, at physiological progestin concentrations, in a dose-responsive manner. Estradiol-17β also stimulates, but testosterone, hydrocortisone and aldosterone do not. The antiprogestin RU486 inhibits progestin stimulation, but also stimulates on its own. Maximal by 24 h, the progestin stimulation then falls off with time. Experiments with actinomycin D and cycloheximide suggest that the thymidine kinase stimulation depends on new RNA and protein synthesis. These data shed further light on progestin stimulation of the growth of human breast cancer. To our knowledge, this is the first report of progestin stimulation of thymidine kinase in human breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号