共查询到20条相似文献,搜索用时 0 毫秒
1.
Vorechovský I 《Nucleic acids research》2006,34(16):4630-4641
The frequency distribution of mutation-induced aberrant 3′ splice sites (3′ss) in exons and introns is more complex than for 5′ splice sites, largely owing to sequence constraints upstream of intron/exon boundaries. As a result, prediction of their localization remains a challenging task. Here, nucleotide sequences of previously reported 218 aberrant 3′ss activated by disease-causing mutations in 131 human genes were compared with their authentic counterparts using currently available splice site prediction tools. Each tested algorithm distinguished authentic 3′ss from cryptic sites more effectively than from de novo sites. The best discrimination between aberrant and authentic 3′ss was achieved by the maximum entropy model. Almost one half of aberrant 3′ss was activated by AG-creating mutations and ~95% of the newly created AGs were selected in vivo. The overall nucleotide structure upstream of aberrant 3′ss was characterized by higher purine content than for authentic sites, particularly in position −3, that may be compensated by more stringent requirements for positive and negative nucleotide signatures centred around position −11. A newly developed online database of aberrant 3′ss will facilitate identification of splicing mutations in a gene or phenotype of interest and future optimization of splice site prediction tools. 相似文献
2.
Prediction of splice sites in non-coding regions of genes is one of the most challenging aspects of gene structure recognition. We perform a rigorous analysis of such splice sites embedded in human 5' untranslated regions (UTRs), and investigate correlations between this class of splice sites and other features found in the adjacent exons and introns. By restricting the training of neural network algorithms to 'pure' UTRs (not extending partially into protein coding regions), we for the first time investigate the predictive power of the splicing signal proper, in contrast to conventional splice site prediction, which typically relies on the change in sequence at the transition from protein coding to non-coding. By doing so, the algorithms were able to pick up subtler splicing signals that were otherwise masked by 'coding' noise, thus enhancing significantly the prediction of 5' UTR splice sites. For example, the non-coding splice site predicting networks pick up compositional and positional bias in the 3' ends of non-coding exons and 5' non-coding intron ends, where cytosine and guanine are over-represented. This compositional bias at the true UTR donor sites is also visible in the synaptic weights of the neural networks trained to identify UTR donor sites. Conventional splice site prediction methods perform poorly in UTRs because the reading frame pattern is absent. The NetUTR method presented here performs 2-3-fold better compared with NetGene2 and GenScan in 5' UTRs. We also tested the 5' UTR trained method on protein coding regions, and discovered, surprisingly, that it works quite well (although it cannot compete with NetGene2). This indicates that the local splicing pattern in UTRs and coding regions is largely the same. The NetUTR method is made publicly available at www.cbs.dtu.dk/services/NetUTR. 相似文献
3.
4.
The activation of cryptic 5' splice sites (5' SSs) is often related to human hereditary diseases. The DNA-based mutation screening strategies are commonly used to recognize the cryptic 5' SSs, because features of the local DNA sequence can influence the choice of cryptic 5' SSs. To improve the identification of the cryptic 5' SSs, we developed a structure-based method, named SPO (structure profiles and odds measure), which combines two parameters, the structural feature derived from hydroxyl radical cleavage pattern and odds measure, to assess the likelihood of a cryptic 5' SS activation in competing with its paired authentic 5' SS. Compared to the current tools for identifying activated cryptic 5' SSs, the SPO algorithm achieves higher prediction accuracy than the other methods, including MaxEnt, MDD, Markov model, weight matrix model, Shapiro and Senapathy matrix, R(i) and ΔG. In addition, the predicted ΔSPO scores from the SPO algorithm exhibited a greater degree of correlation with the strength of cryptic 5' SS activation than that measured from the other seven methods. In conclusion, the SPO algorithm provides an optimal identification of cryptic 5' SSs, can be applied in designing mutagenesis experiments for various splicing events and may be helpful to investigate the relationship between structural variants and human hereditary diseases. 相似文献
5.
6.
7.
R Nussinov 《Journal of biomolecular structure & dynamics》1989,6(5):985-1000
It is known that the GT doublet is well conserved at the 5' exon/intron splice junction and is frequently embedded in the AGGT quartet. Although only the underlined G is invariable, splicing and ligation are accurately executed. In this work we search for additional conserved potential signals which may aid in 5' splice site recognition. Extensive searches which are not limited to a preconceived consensus sequence are carried out. We investigate the distributions of the 256 quartets in a 1000 nucleotide span around the 5' splice sites in approximately 1700 eukaryotic nuclear precursor mRNAs. Several potential signals are noted. Of particular interest are quartets containing runs of G, e.g., G4, G3T, G3C, G3A and AG3 in the intron immediately downstream and some C-containing quartets in the exon upstream of the 5' splice site. In an analogous calculation, (A)GGG(A) has also been found to be frequent in the intron, 60 nucleotides upstream and (A)CCC(A) in the exon downstream of the 3' splice site. These results are consistent with the recent indications that exon sequences may play a role in efficient splicing. Some models are proposed. 相似文献
8.
A 33,000 g supernatant from human platelets showed a biphasic heat inactivation curve at 45, 50 and 55 degrees C of the cAMP and cGMP phosphodiesterase. This could suggest the presence of two differently heat sensitive phosphodiesterases. However, a preparation heated for 30 min at 55 degrees C, where only the apparently thermostable form of the enzyme remained, still displayed the same characteristics as the starting material, i.e. two apparent Km values for cAMP, a cAMP specific activity lower at low protein concentration (less than 50 micrograms/ml) than at high protein concentration(greater than 100 micrograms/ml), and three peaks of activity upon linear sucrose density gradient. Moreover, a biphasic inactivation curve was again observed after a second heat treatment. These results demonstrated that the heat effect is not a simple protein denaturation of one of two independent species. A study at different temperatures of the profile of the cAMP phosphodiesterase upon sucrose gradient demonstrated that the dissociated form was predominant at high temperature whereas lower temperature favored the associated form. During heat treatment, the dissociated form is at first denatured and this leads to a shift in the equilibrium between the associated and dissociated forms of the phosphodiesterase in favor of the dissociated form. From the overall results, one can draw a model for phosphodiesterase regulation by dissociation-reassociation. 相似文献
9.
Sahashi K Masuda A Matsuura T Shinmi J Zhang Z Takeshima Y Matsuo M Sobue G Ohno K 《Nucleic acids research》2007,35(18):5995-6003
We have found that two previously reported exonic mutations in the PINK1 and PARK7 genes affect pre-mRNA splicing. To develop an algorithm to predict underestimated splicing consequences of exonic mutations at the 5′ splice site, we constructed and analyzed 31 minigenes carrying exonic splicing mutations and their derivatives. We also examined 189 249 U2-dependent 5′ splice sites of the entire human genome and found that a new variable, the SD-Score, which represents a common logarithm of the frequency of a specific 5′ splice site, efficiently predicts the splicing consequences of these minigenes. We also employed the information contents (Ri) to improve the prediction accuracy. We validated our algorithm by analyzing 32 additional minigenes as well as 179 previously reported splicing mutations. The SD-Score algorithm predicted aberrant splicings in 198 of 204 sites (sensitivity = 97.1%) and normal splicings in 36 of 38 sites (specificity = 94.7%). Simulation of all possible exonic mutations at positions −3, −2 and −1 of the 189 249 sites predicts that 37.8, 88.8 and 96.8% of these mutations would affect pre-mRNA splicing, respectively. We propose that the SD-Score algorithm is a practical tool to predict splicing consequences of mutations affecting the 5′ splice site. 相似文献
10.
11.
Isolation and characterization of the human tyrosine hydroxylase gene: identification of 5' alternative splice sites responsible for multiple mRNAs 总被引:16,自引:0,他引:16
K L O'Malley M J Anhalt B M Martin J R Kelsoe S L Winfield E I Ginns 《Biochemistry》1987,26(22):6910-6914
A full-length genomic clone for human tyrosine hydroxylase (L-tyrosine, tetrahydropteridine:oxygen oxidoreductase, EC 1.14.16.2) has been isolated. A human brain genomic library constructed in EMBL3 was screened by using a rat cDNA for tyrosine hydroxylase as a probe [Brown, E. R., Coker, G. T., III, & O'Malley, K. L. (1987) Biochemistry 26, 5208-5212]. Out of one million recombinant phage, one clone was identified that hybridized to both 5' and 3' rat cDNA probes. Restriction endonuclease mapping. Southern blotting, and sequence analysis revealed that, like its rodent counterpart, the human gene is single copy, contains 13 primary exons, and spans approximately 8 kilobases (kb). In contrast to the rat gene, human tyrosine hydroxylase undergoes alternative RNA processing within intron 1, generating at least three distinct mRNAs. A comparison of the human tyrosine hydroxylase and phenylalanine hydroxylase [DiLella, A. G., Kwok, S. C. M., Ledley, F. D., Marvit, J., & Woo, S. L. C. (1986) Biochemistry 25, 743-749] genes indicates that although both probably evolved from a common ancestral gene, major changes in the size of introns have occurred since their divergence. 相似文献
12.
13.
14.
Efficient use of a 'dead-end' GA 5' splice site in the human fibroblast growth factor receptor genes
下载免费PDF全文

We have investigated use of a conserved non-canonical GA 5' splice site present in vertebrate fibroblast growth factor receptor (FGFR) genes. Despite previous studies suggesting that GA at the beginning of an intron is incompatible with splicing, we observe efficient utilization of this splice site for human FGFR1 gene constructs. We show that use of the GA splice site is dependent on both a conventional splice site six nucleotides upstream and sequence elements within the downstream intron. Furthermore, our results are consistent with competition between the tandem 5' splice sites being mediated by U6 snRNP, rather than U1 snRNP. Thus the GA 5' splice site represents an extension of the adjacent conventional 5' splice site, the first natural example of such a composite 5' splice site. 相似文献
15.
A Ca2+-dependent cyclic nucleotide phosphodiesterase has been partially purified from extracts of porcine brain by column chromatography on Sepharose 6 B containing covalently linked protamine residues, ammonium sulfate salt fractionation, and ECTEOLA-cellulose column chromatography. The resultant preparation contained a single form of cyclic nucleotide phosphodiesterase activity by the criteria of isoelectric focusing, gel filtration chromatography on Sephadex G-200, and electrophoretic migration on polyacrylamide gels. When fully activated by the addition of Ca2+ and microgram quantities of a purified Ca2+-binding protein (CDR), the phosphodiesterase hydrolyzed both adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP), with apparent Km values of 180 and 8 μm, respectively. Approximately 15% of the total enzymic activity was present in the absence of added CDR and Ca2+. This activity exhibited apparent Km values for the two nucleotides identical to those observed for the maximally activated enzyme. Competitive substrate kinetics and heat destabilization studies demonstrated that both cyclic nucleotides were hydrolyzed by the same phosphodiesterase. The purified enzyme was identical to a Ca2+-dependent phosphodiesterase present in crude extract by the criteria of gel filtration chromatography, polyacrylamide-gel electrophoresis, and kinetic behavior.Apparent Km values of the Ca2+-dependent phosphodiesterase for cyclic AMP and cyclic GMP were lowered more than 20-fold as CDR quantities in the assay were increased to microgram amounts, whereas the respective maximal velocities remained constant. The apparent Km for Mg2+ was lowered more than 50-fold as CDR was increased to microgram amounts. Half-maximal activation of the phosphodiesterase occurred with lower amounts of CDR as a function of either increasing degrees of substrate saturation or increasing concentrations of Mg2+. At low cyclic nucleotide substrate concentrations i.e., 2.5 μm, cyclic GMP was hydrolyzed at a fourfold greater velocity than cyclic AMP. At high substrate concentrations (millimolar range) cyclic AMP was hydrolyzed at a threefold greater rate than cyclic GMP. 相似文献
16.
17.
A point mutation in the conserved hexanucleotide at a yeast 5' splice junction uncouples recognition, cleavage, and ligation 总被引:35,自引:0,他引:35
We have constructed an actin-HIS4 gene fusion, such that expression of HIS4 requires proper splicing of the actin intron. Using this chimeric gene in an in vivo screen for splicing mutations, we have isolated a G to A transition in the fifth position of the yeast 5' consensus sequence/GTAPyGT. This mutation still allows the junction to be recognized by the splicing machinery, albeit inefficiently. Surprisingly, the fidelity of the 5' endonucleolytic cleavage is also reduced. This results in an incorrect cleavage 6 nucleotides 5' of the 5' junction, at the dinucleotide/AT. Cleavage at this abnormal site does not lead to the production of mature mRNA, although this species appears to be in a lariat structure. The behavior of this mutant argues that recognition of the 5' junction and subsequent cleavage are separable events and, furthermore, that requirements for 3' endonucleolytic cleavage may be more complex than previously imagined. 相似文献
18.
19.
A single trinucleotide, 5'AGC3'/5'GCT3', of the triplet-repeat disease genes confers metal ion-induced non-B DNA structure.
下载免费PDF全文

Expansion of (AGC)n repeats has been associated with genetic disorders called triplet-repeat diseases such as Huntington's disease (HD), myotonic muscular dystrophy (DM) and Kennedy's disease. To gain insight into the abnormal behavior of these repeats, we studied their structural properties in supercoiled DNA. Chemical probing revealed that, under physiological salt and pH conditions, Zn2+ or Co2+ ions induce (AGC)n repeats to adopt a novel non-B DNA structure in which all cytosine but none of adenine residues in either strand become unpaired. The minimum size of (AGC)n repeat that could form this structure independently of neighboring sequences is a single unit of double-stranded trinucleotide, 5'AGC3'/5'GCT3'. Other trinucleotide units of the same nucleotide composition, 5'CAG3'/5'CTG3' or 5'GCA3'/5'TGC3', do not form non-B DNA structures. This unusual DNA structural properly adopted by a single 5'AGC3'/5'GCT3' trinucleotide may contribute to expansion of (AGC)n sequences in triplet-repeat diseases. 相似文献
20.
Verhoeven EE van Kesteren M Moolenaar GF Visse R Goosen N 《The Journal of biological chemistry》2000,275(7):5120-5123
Nucleotide excision repair in Escherichia coli is a multistep process in which DNA damage is removed by incision of the DNA on both sides of the damage, followed by removal of the oligonucleotide containing the lesion. The two incision reactions take place in a complex of damaged DNA with UvrB and UvrC. It has been shown (Lin, J. -J., and Sancar, A. (1992) J. Biol. Chem. 267, 17688-17692) that the catalytic site for incision on the 5' side of the damage is located in the UvrC protein. Here we show that the catalytic site for incision on the 3' side is in this protein as well, because substitution R42A abolishes 3' incision, whereas formation of the UvrBC-DNA complex and the 5' incision reaction are unaffected. Arg(42) is part of a region that is homologous to the catalytic domain of the homing endonuclease I-TevI. We propose that the UvrC protein consists of two functional parts, with the N-terminal half for the 3' incision reaction and the C-terminal half containing all the determinants for the 5' incision reaction. 相似文献