首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dithiocarbamate fungicides maneb and mancozeb induce a short-term stress response in a transgenic Caenorhabditis elegans strain (PC72) carrying a reporter lacZ gene under the control of a homologous heat shock (hsp16) promoter. This response can be readily monitored as induced beta-galactosidase activity, either by in situ staining or by a quantitative fluorometric enzyme assay. Particularly strong responses are induced by mancozeb (three- to fivefold above controls at 500 microg mL(-1)), causing acute toxicity at concentrations comparable to those recommended for field application (2 mg mL(-1)). Although much of this fungicide is adsorbed by soil, sufficient (ca. 6%) enters the soil water compartment to cause mild stress in the transgenic worm assay. Among possible metabolites from mancozeb breakdown, neither Mn2+ nor ethylenethiourea (ETU) is particularly toxic even at 10% of the optimum mancozeb dosage. Stress responses to a range of other pesticides are also reported, and in several cases it is clear that a nontarget soil species (here, transgenic C. elegans) may be sensitive to low-level contamination.  相似文献   

2.
Saccharomyces cerevisiae as model system was used to evaluate the occurrence of resistant mutants and adaptation mechanism to mancozeb (MZ), a widespread fungicide of the dithiocarbamate class with a broad spectrum of action and multiple cell targets. We were unable to isolate mutants resistant to inhibitory concentration of MZ but found an unusually large number of mitochondrial defective petite mutants among cells incubated in the presence of subinhibitory MZ concentration. Similar results were obtained with two other dithiocarbamate fungicides. Comparison of wild type and petite mutants showed that the latter were more resistant to toxic effects of MZ, highlighting the role of mitochondria in MZ-tolerance. The data suggest that petite cells, arising by exposure to sub-inhibitory MZ concentration, are not induced by fungicides but are spontaneous mutants already present in the population before the contact with the fungicide.  相似文献   

3.
Recent data suggest that there might be a subtle thermal explanation for the apparent induction by radiofrequency (RF) radiation of transgene expression from a small heat-shock protein (hsp16-1) promoter in the nematode, Caenorhabditis elegans. The RF fields used in the C. elegans study were much weaker (SAR 5-40 mW kg(-1)) than those routinely tested in many other published studies (SAR approximately 2 W kg(-1)). To resolve this disparity, we have exposed the same transgenic hsp16-1::lacZ strain of C. elegans (PC72) to higher intensity RF fields (1.8 GHz; SAR approximately 1.8 W kg(-1)). For both continuous wave (CW) and Talk-pulsed RF exposures (2.5 h at 25 degrees C), there was no indication that RF exposure could induce reporter expression above sham control levels. Thus, at much higher induced RF field strength (close to the maximum permitted exposure from a mobile telephone handset), this particular nematode heat-shock gene is not up-regulated. However, under conditions where background reporter expression was moderately elevated in the sham controls (perhaps as a result of some unknown co-stressor), we found some evidence that reporter expression may be reduced by approximately 15% following exposure to either Talk-pulsed or CW RF fields.  相似文献   

4.
We have previously reported that low intensity microwave exposure (0.75-1.0 GHz CW at 0.5 W; SAR 4-40 mW/kg) can induce an apparently non-thermal heat-shock response in Caenorhabditis elegans worms carrying hsp16-1::reporter genes. Using matched copper TEM cells for both sham and exposed groups, we can detect only modest reporter induction in the latter exposed group (15-20% after 2.5 h at 26 degrees C, rising to approximately 50% after 20 h). Traceable calibration of our copper TEM cell by the National Physical Laboratory (NPL) reveals significant power loss within the cell (8.5% at 1.0 GHz), accompanied by slight heating of exposed samples (approximately 0.3 degrees C at 1.0 W). Thus, exposed samples are in fact slightly warmer (by < or =0.2 degrees C at 0.5 W) than sham controls. Following NPL recommendations, our TEM cell design was modified with the aim of reducing both power loss and consequent heating. In the modified silver-plated cell, power loss is only 1.5% at 1.0 GHz, and sample warming is reduced to approximately 0.15 degrees C at 1.0 W (i.e., < or =0.1 degrees C at 0.5 W). Under sham:sham conditions, there is no difference in reporter expression between the modified silver-plated TEM cell and an unmodified copper cell. However, worms exposed to microwaves (1.0 GHz and 0.5 W) in the silver-plated cell also show no detectable induction of reporter expression relative to sham controls in the copper cell. Thus, the 20% "microwave induction" observed using two copper cells may be caused by a small temperature difference between sham and exposed conditions. In worms incubated for 2.5 h at 26.0, 26.2, and 27.0 degrees C with no microwave field, there is a consistent and significant increase in reporter expression between 26.0 and 26.2 degrees C (by approximately 20% in each of the six independent runs), but paradoxically expression levels at 27.0 degrees C are similar to those seen at 26.0 degrees C. This surprising result is in line with other evidence pointing towards complex regulation of hsp16-1 gene expression across the sub-heat-shock range of 25-27.5 degrees C in C. elegans. We conclude that our original interpretation of a non-thermal effect of microwaves cannot be sustained; at least part of the explanation appears to be thermal.  相似文献   

5.
Ethylenethiourea (ETU) is a metabolite, environmental degradation product and minor technical impurity of the ethylenebisdithiocarbamate (EBDC) class of fungicides. The genetic toxicology of ETU is important given that ETU causes thyroid tumors in rodents and liver tumors in mice. Although it is clear that ETU induces thyroid tumors via a non-genotoxic, threshold mechanism, the role ETU plays in inducing mouse liver tumors remains to be fully elucidated. Recently, Dearfield (Mutation Res., 317, 111–132, 1994) reviewed the genetic toxicology of ETU, and concluded that, although ETU is not a potent genotoxic agent, it is weakly genotoxic. This view stands in contrast to reports from several independent authorities that have generally concurred that ETU is not a mammalian genotoxin (IARC, 1987; MAFF, 1990; NTP, 1992; FAO/WHO, 1994). These conflicting reports highlight a generic problem in genotoxicity safety assessment: although individual test results typically yield either a positive or negative response, the overall evaluation of an extensive battery of tests for a particular chemical rarely yields an unambiguous conclusion. Recently, Mendelsohn et al. (Mutation Res., 266, 43–60, 1992) showed that the response of a chemical to a battery of genotoxicity tests is not a dichotomous (i.e., either positive or negative) property, but rather, appears to be a continuous property that ranges from strongly negative to strongly positive. We have used these data, together with a four-step weight of the evidence procedure, to evaluate ETU. Our analysis indicates that ETU is not genotoxic in mammalian systems and suggests that ETU likely induces mouse liver tumors by a non-genotoxic mechanism.  相似文献   

6.
Representative fungicides from three or four families used for management of powdery mildew and other diseases in tree fruits were evaluated for their effects on a common spider mite and predator mite species, respectively. A modified Munger cell technique was effective in measuring the response of phytophagous and predaceous mites to fungicide residues on detached leaves in the laboratory. Demethylation-inhibiting (DMI) (imidazole [triflumazole] and triazole [myclobutanil]) and strobilurin (trifloxystrobin) fungicides were not toxic to female Tetranychus urticae Koch and Galendromus occidentalis (Nesbitt), and no sublethal effects were found on fecundity and predation rate after 3-5-d exposure to residues. Benomyl, a benzimidazole fungicide, increased adult mortality and reduced fecundity for both mite species; however, it did not alter the predation rate of G. occidentalis females on T. urticae eggs and larvae. Female G. occidentalis that survived the lethal effects of benomyl and the comparison acaricide pyridaben were unimpaired in predation. Our results for benomyl substantiate those of earlier studies and provide evidence for nontoxic effects of DMI and strobilurin fungicides on mites. We propose that DMI and strobilurin fungicides are a good fit for integrated mite management programs due to conservation of phytoseiid predatory mites.  相似文献   

7.
Genetic effects of fungicides   总被引:2,自引:0,他引:2  
14 fungicides have been tested for genetic activity on diploid cells of the ascomycete Saccharomyces cerevisiae. The test system used was induction of: (1) mistotic gene conversion at 2 different loci; and (2) cytoplasmic respiratory-deficient mutants. 2 fungicides turned out to be strongly active in inducing mitotic gene conversion when applied as commercial preparations: Ortho-phaltan (N-(trichloromethylthio)phthalimide) and Polyram-combi (ammonia complex of zinc ethylenebis-(dithiocarbamate) and polyethylenebis(thiocarbamoyl)disulfide). Cignolin (1,8-dihydroxyanthranole), used in dermatology, did not induce mitotic gene conversion but induced cytoplasmic respiratory-deficient mutation at frequencies close to 100%. With 4 more fungicides only a week apparent induction of gene conversion could be observed: Antracol (zinc propylenebis(dithiocarbamate)), Basfungin (ammonia complex of zinc propylenebis (dithiocarbamate) and polypropylenebis(thiocarbamoyl)-disulfide), Dithane-Ultra (manganese-zinc ethylenebis(dithiocarbamate) complex) and Captan (N-(trichloromethylthio)-4-cyclohexene-1,2-dicarbaximide).  相似文献   

8.
Historically, sodium azide has been used to anesthetize the nematode Caenorhabditis elegans; however, the mechanism by which it survives this exposure is not understood. In this study, we report that exposure of wild-type C elegans to 10 mM sodium azide for up to 90 minutes confers thermotolerance (defined as significantly increased survival probability [SP] at 37 degrees C) on the animal. In addition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed enhanced Hsp70 expression, whereas Western blot analysis revealed the induction of Hsp16. We also tested the only known C elegans Hsp mutant def-21 (codes for Hsp90), which constitutively enters the stress-resistant state known as the dauer larvae. Daf-21 mutants also acquire sodium azide-induced thermotolerance, whereas 3 non-Hsp, constitutive dauer-forming mutants exhibited a variable response to azide exposure. We conclude that the ability of C elegans to survive exposure to azide is associated with the induction of at least 2 stress proteins.  相似文献   

9.
Ethylene thiourea (ETU) is a common contaminant, metabolite and degradation product of the fungicide class of ethylene bisdithiocarbamates (EBDCs); as such, they present possible exposure and toxicological concerns to exposed individuals. ETU has been assayed in many different tests to assess genotoxicity activity. While a great number of negative results are found in the data base, there is evidence that demonstrates ETU is capable of inducing genotoxic endpoints. These include responses for gene mutations (e.g. Salmonella), structural chromosomal alterations (e.g. aberrations in cultured mammalian cells as well as a dominant lethal assay) and other genotoxic effects (e.g. bacterial rec assay and several yeast assays).It is important to consider the magnitude of the positive responses as well as the concentrations/doses used when assessing the genotoxicity of ETU. While ETU induces a variety of genotoxic endpoints, it does not appear to be a potent genotoxic agent. For example, it is a weak bacterial mutagen in the Salmonella assay without activation in strain TA1535 at concentrations generally above 1000 μg/plate. Weak genotoxic activity of this sort is usually observed in most of the assays with positive results. Since ETU does not appear very potent and is not extremely toxic to test cells and organisms, it is not surprising to find that ETU does not produce consistent effects in many of the assays reviewed. Consequently, in many instances, mixed results for the same assay type are reported by different investigators, but as reviewed herein, these results may be dependent upon the test conditions in each individual laboratory. A primary shortcoming with many of the reported negative results is that the concentrations or doses used are not high enough for an adequate test for ETU activity. There are also problems with many of the negative assays generally in protocol or reporting, particularly with the in vivo studies (e.g. inappropriate sample number and/or sampling times; inadequate top dose employed).Overall, while ETU does not appear to be a potent genotoxic agent, it is capable of producing genotoxic effects (e.g. gene mutations, structural chromosomal aberrations). This provides a basis for weak genotoxic activity by ETU. Furthermore, based on a suggestive dominant lethal positive result, there may be a concern for heritable effects. Due to the many problems with the conduct and assessment of the in vivo assays, it is worth repeating in vivo  相似文献   

10.
The wing spot test in Drosophila melanogaster is a suitable system for the analysis of genotoxic activity of compounds that need metabolic transformation to render them active. We have analysed the genotoxicity of three fungicides for which it was reported that the metabolic processes taking place in vivo may determine their activity. The compounds analysed are captan, maneb, zineb and ethylenethiourea (ETU) (a metabolic derivative of ethylenebisdithiocarbamates like maneb and zineb). We have also evaluated the ability of ETU to form genotoxic derivatives in vivo analysing this compound in combined treatments with sodium nitrite. Both standard and high bioactivation NORR strains have been used. Captan, usually considered a mutagen in vitro but a non-mutagen in vivo, gave negative results in the wing spot test with both crosses. Positive results were obtained for maneb in the standard cross and for ETU in both the standard and the high bioactivation cross. The genotoxicities of maneb and ETU were higher when treatments were made on media in which nitrosation is favoured. A low absorption of the fungicide and an inefficient availability of the compound in the target may explain negative results obtained with zineb in both crosses. The results obtained in this study with the wing spot test demonstrate once again the suitability of this in vivo assay, in which absorption, distribution and metabolism processes take place, for the evaluation of genotoxicity of compounds to which humans are exposed.  相似文献   

11.
Bacaj T  Shaham S 《Genetics》2007,176(4):2651-2655
Cell-specific promoters allow only spatial control of transgene expression in Caenorhabditis elegans. We describe a method, using cell-specific rescue of heat-shock factor-1 (hsf-1) mutants, that allows spatial and temporal regulation of transgene expression. We demonstrate the utility of this method for timed reporter gene expression and for temporal studies of gene function.  相似文献   

12.
The mutagenic effect of ethylenethiourea (ETU), a degradation product and metabolite of ethylenebisdithiocarbamates, which are widely used as fungicides, was studied in different test systems.ETU induced mutations of the base-pair substitution type in Salmonella typhimurium TA 1530 in vitro as well as in the host-mediated assay. In the host-mediated assay, a dose of 6000 mg/kg (LD50 = 5400 mg/kg) resulted in a slight but significant increase of the reversion frequency by a factor of 2.37.The results of the micronucleus test were negative after two-fold oral applications of 700, 1850 and 6000 mg/kg to Swiss albino mice. Thus it is concluded that ETU hardly induces any chromosomal anomality in the bone marrow.No dominant-lethal effect was observed after single oral doses of 500, 1000 and 3500 mg/kg given to male mice.  相似文献   

13.
Detection of toxic substances interfering with endocrine system is one of the major preoccupations of the European community. A whole-cell bioassay for pollution detection based on stress induction has been designed. Well characterized toxicants, cadmium chloride and thiram (a dithiocarbamate fungicide), were used to optimize the detection conditions such as time-course conditions, cell line and reporter gene to be used. HeLa cells containing the firefly luciferase (luc) reporter gene under the control of the Drosophila melanogaster hsp22 promoter were compared to liver cells (HepG2) containing the same stress gene promoter fused either to the luc or the EGFP (Enhanced-Green Fluorescent Protein) gene. The sensitivity of the obtained bioassay was found to be enhanced by the concomitant use of liver cells and EGFP reporter gene. The detection limits of the toxicants were then lowered from 1 to 0.1 microM and from 1 to 0.01 microM for CdCl(2) and thiram, respectively.  相似文献   

14.
Microwave radiation can alter protein conformation without bulk heating   总被引:8,自引:0,他引:8  
Exposure to microwave radiation enhances the aggregation of bovine serum albumin in vitro in a time- and temperature-dependent manner. Microwave radiation also promotes amyloid fibril formation by bovine insulin at 60 degrees C. These alterations in protein conformation are not accompanied by measurable temperature changes, consistent with estimates from field modelling of the specific absorbed radiation (15-20 mW kg(-1)). Limited denaturation of cellular proteins could explain our previous observation that modest heat-shock responses are induced by microwave exposure in Caenorhabditis elegans. We also show that heat-shock responses both to heat and microwaves are suppressed after RNA interference ablating heat-shock factor function.  相似文献   

15.
BACKGROUND: In many animals, the epidermis is in permanent contact with the environment and represents a first line of defense against pathogens and injury. Infection of the nematode Caenorhabditis elegans by the natural fungal pathogen Drechmeria coniospora induces the expression in the epidermis of antimicrobial peptide (AMP) genes such as nlp-29. Here, we tested the hypothesis that injury might also alter AMP gene expression and sought to characterize the mechanisms that regulate the innate immune response. RESULTS: Injury induces a wound-healing response in C. elegans that includes induction of nlp-29 in the epidermis. We find that a conserved p38-MAP kinase cascade is required in the epidermis for the response to both infection and wounding. Through a forward genetic screen, we isolated mutants that failed to induce nlp-29 expression after D. coniospora infection. We identify a kinase, NIPI-3, related to human Tribbles homolog 1, that is likely to act upstream of the MAPKK SEK-1. We find NIPI-3 is required only for nlp-29 induction after infection and not after wounding. CONCLUSIONS: Our results show that the C. elegans epidermis actively responds to wounding and infection via distinct pathways that converge on a conserved signaling cassette that controls the expression of the AMP gene nlp-29. A comparison between these results and MAP kinase signaling in yeast gives insights into the possible origin and evolution of innate immunity.  相似文献   

16.
We have previously shown that fungicide Mancozeb causes a 50% decrease in Bradyrhizobium sp USDA 3187 growth rate and affects the bacteria-root symbiotic interaction. In order to elucidate the fungicide toxicity mechanism we determined the effects of Mancozeb on cell chemical composition, glutathione (GSH) content (molecule involved in the detoxification process), glutathione S-transferase (GST) activity and on polyamine, exopolysaccharides, capsular polysaccharides and lipopolysaccharides. Mancozeb produced biochemical alterations in membrane composition, polysaccharides and polyamines. In spite of the increment of GSH content and GST activity, they are not enough to prevent the growth diminution.  相似文献   

17.
Populations of the causal agent of wheat tan spot, Pyrenophora tritici-repentis, that are collected from fields frequently treated with reduced fungicide concentrations have reduced sensitivity to strobilurin fungicides and azole fungicides (C14-demethylase inhibitors). Energy-dependent efflux transporter activity can be induced under field conditions and after in vitro application of sublethal amounts of fungicides. Efflux transporters can mediate cross-resistance to a number of fungicides that belong to different chemical classes and have different modes of action. Resistant isolates can grow on substrata amended with fungicides and can infect plants treated with fungicides at levels above recommended field concentrations. We identified the hydroxyflavone derivative 2-(4-ethoxy-phenyl)-chromen-4-one as a potent inhibitor of energy-dependent fungicide efflux transporters in P. tritici-repentis. Application of this compound in combination with fungicides shifted fungicide-resistant P. tritici-repentis isolates back to normal sensitivity levels and prevented infection of wheat leaves. These results highlight the role of energy-dependent efflux transporters in fungicide resistance and could enable a novel disease management strategy based on the inhibition of fungicide efflux to be developed.  相似文献   

18.
Lipoperoxidative damage caused by exposure of isolated hepatocytes or cultivated hepatoma cells to ADP-iron or to 4-hydroxynonenal induces the synthesis of some proteins which are different under these two conditions but are always a subset of the proteins induced in each type of cells upon heat-shock (heat-shock proteins). For at least one of these proteins (hsp 31), induced by 4-hydroxynonenal, the increase is dose-dependent and the effect of heat and the chemical seems to be additive. Lipoperoxidation may be implicated in the induction of some of the heat shock proteins, but reproduces only incompletely the response of protein synthesis typical of heat-shock conditions.  相似文献   

19.
Ye B  Rui Q  Wu Q  Wang D 《PloS one》2010,5(11):e14052
Metallothioneins (MTs) are small, cysteine-rich polypeptides, but the role of MTs in inducing the formation of adaptive response is still largely unknown. We investigated the roles of metallothionein genes (mtl-1 and mtl-2) in the formation of cross-adaptation response to neurobehavioral toxicity from metal exposure in Caenorhabditis elegans. Pre-treatment with mild heat-shock at L2-larva stage effectively prevented the formation of the neurobehavioral defects and the activation of severe stress response in metal exposed nematodes at concentrations of 50 and 100 μM, but pre-treatment with mild heat-shock did not prevent the formation of neurobehavioral defects in 200 μM of metal exposed nematodes. During the formation of cross-adaptation response, the induction of mtl-1 and mtl-2 promoter activity and subsequent GFP gene expression were sharply increased in 50 μM or 100 μM of metal exposed Pmtl-1::GFP and Pmtl-2::GFP transgenic adult animals after mild heat-shock treatment compared with those treated with mild heat-shock or metal exposure alone. Moreover, after pre-treatment with mild heat-shock, no noticeable increase of locomotion behaviors could be observed in metal exposed mtl-1 or mtl-2 mutant nematodes compared to those without mild heat-shock pre-treatment. The defects of adaptive response to neurobehavioral toxicity induced by metal exposure formed in mtl-1 and mtl-2 mutants could be completely rescued by the expression of mtl-1 and mtl-2 with the aid of their native promoters. Furthermore, over-expression of MTL-1 and MTL-2 at the L2-larval stage significantly suppressed the toxicity on locomotion behaviors from metal exposure at all examined concentrations. Therefore, the normal formation of cross-adaptation response to neurobehavioral toxicity induced by metal exposure may need the enough accumulation of MTs protein in animal tissues.  相似文献   

20.
The effect of cellular capsule elimination in Saccharomyces cerevisiae yeasts (protoplast formation) on the heat-shock protein synthesis and the synthesis of the proteins in protoplasts were studied. The methods of mono- and dimeric electrophoresis have demonstrated that (1) about 18 heat-shock proteins with the molecular masses 26-98 Kd are synthesized in cells at 41 degrees C; (2) protoplast formation per se does not induce the synthesis of heat-shock proteins, but the induction of these proteins in protoplasts at 41 degrees C is similar to the one in intact cells. The protoplast formation induces the synthesis of specific proteins different from heat-shock proteins and the synthesis is inhibited by the heat-shock. The heat-shock induces modification of 88 and 86 Kd heat-shock proteins. It inhibits the synthesis of a number of peptides (15-50 Kd) in cells and protoplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号