首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to test the preference of growing axons for membrane-associated positional specificity a new in vitro assay was developed. In this assay, membrane fragments of two different sources are arranged as a carpet of very narrow alternating strips. Axons growing on such striped carpets are simultaneously confronted with the two substrates at the stripe borders. If there is a preference of axons for one or the other substrate they become oriented by the stripes and grow within the lanes of the preferred substrate. Such preferential growth could, in principle, be due to affinity to attractive factors on the preferred stripes or avoidance of repulsive factors on the alternate stripes. This assay system was used to investigate growth of chick retinal axons on tectal membranes. Tissue strips cut from various areas of the retina were explanted and the extending axons were confronted with stripes of cell membranes from various areas within the optic tectum. Tectal cell membranes prove to be an excellent substrate for the growth of retinal axons. Nasal and temporal axons can grow well on membranes of both posterior and anterior tectal cells. If, however, temporal axons are given a choice and encounter the border between anterior and posterior membranes they show a marked preference for growth on membranes of the anterior tectum, their natural target area. Nasal axons do not show a preference in this assay system. The transition from nasal to temporal properties within the retina is abrupt. In contrast, the transition from anterior to posterior properties of the tectal cell membranes occurs as a smooth gradient. Significantly, the positional differences of tectal membrane properties are only seen during the period of development of the retinotectal projection and are independent of tectal innervation by retinal axons. These anterior-posterior differences disappear by embryonic day 14.  相似文献   

2.
We examined whether regenerating axons from adult rat ganglion cells are able to recognize their appropriate target region in vitro. Explants from adult rat retina were cocultured with embryonic sagittal midbrain slices in Matrigel®. The midbrain sections contained the superior colliculus, the main target for retinal ganglion cell axons in rats, and the inferior colliculus. We observed a statistically significant preference of both temporal and nasal retinal axons to grow toward their appropriate target region (anterior and posterior superior colliculus, respectively). No preferential growth of retinal ganglion cell axons was detected in controls, for which retinal explants were cultured on their own. When retinal ganglion cell axons were given a choice between superior colliculus and inferior colliculus, axons from nasal retina preferentially grew toward the posterior superior colliculus and avoided the inferior colliculus. In contrast, temporal axons in the same assay did not show preference for either of the colliculi. These findings suggest that regenerating axons from adult rat retina are able to recognize target-specific guidance cues released from embryonic midbrain targets in vitro. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 379–387, 1998  相似文献   

3.
In lower vertebrates such as frogs and fish, long ocular dominance stripes with anterior-posterior (A-P) orientation can be produced by causing both eyes to innervate one optic tectum during the course of development. Similar experiments on adult animals usually produce patches rather than stripes. During development, new retinal fibers from the nasal retina segregate into appropriate stripes at the growing edge of the posterior (P) tectum while new temporal fibers segregate at the non-growing anterior (A) tectal edge. Fiber segregation into long A-P oriented stripes might depend upon a template produced by new nasal fibers initiating stripe orientation in the vicinity of new tectal cells; new nasal fibers would orient to the nascent (posterior) edge of the template while temporal fibers would orient to the anterior (non-growing) end of the template. To test the dependence of stripe formation on the matching of nascent retinal cells with nascent tectal cells, we compared stripe orientation in animals with isogenic double nasal innervation and isogenic double temporal innervation of the tectum. In double nasal innervation, the oldest retinal cells innervate the anterior tectum; new fibers from the entire retinal periphery always innervate the newest tectal cells at the posterior tectum. Stripes are oriented A-P, consistent with a maturation front model. In contrast, the oldest retinal cells innervate the newest (posterior) tectal cells in double temporal innervation of the tectum; the growing retinal periphery innervates the non-growing anterior tectum. Stripes are also oriented A-P, indicating that the production of long stripes does not depend upon maturation front matching of nascent retinal fibers and nascent tectal cells.  相似文献   

4.
Axonal growth cones originating from explants of embryonic chick retina were simultaneously exposed to two different cell monolayers and their preference for particular monolayers as a substrate for growth was determined. These experiments show that: (1) nasal retinal axons can distinguish between retinal and tectal cells; (2) temporal retinal axons can distinguish between tectal cells that originated from different positions within the tectum along the antero-posterior axis; (3) axons originating from nasal parts of the retina have different recognizing capabilities from temporal axons; (4) the property of the tectal cells, which is attractive for temporal axons, has a graded distribution along the antero-posterior axis of the tectum; and (5) this gradient also exists in non-innervated tecta.  相似文献   

5.
During development, many CNS projection neurons establish topographically ordered maps in their target regions. Myelin-associated inhibitors of neurite growth contribute to the confinement of fiber tracts during development and limit plastic changes after CNS projections have been formed. Neutralization of myelin-associated growth inhibitors leads to an expansion of the retinal innervation of the superior colliculus (SC). In the lesioned adult mammalian CNS, these long projection neurons are usually unable to regrow axons over long distances after lesion due to myelin-associated inhibitors, which interfere with axonal growth in vivo and in vitro. Application of a specific antibody directed against myelin-inhibitors (IN-1) promotes regrowth of corticospinal tract or retinal ganglion cell axons. In the present study, we asked whether application of an antibody to myelin-associated growth inhibitors would lead to disturbances of target-specific axon guidance. To examine this issue, we used an in vitro model, the “stripe assay,” to examine the behavior of rat retinal ganglion cell axons on membranes from embryonic and deafferented adult rat SC. On membrane preparations from embryonic rat SC, retinal fibers avoid posterior tectal membranes, possibly due to the presence of a repulsive factor. Nasal retinal axons show a random growth pattern. On membranes prepared from the deafferented adult rat SC, temporal and nasal axons prefer to grow on membranes prepared from their specific target region, which suggests the involvement of target-derived attractive guidance components. The results of the present study show that retinal axons grow significantly faster in the presence of IN-1 antibody that neutralizes myelin-associated growth inhibitors present in the membrane preparations from the adult rat SC. IN-1 antibody, however, does not interfere with specific axonal guidance. This suggests that axonal guidance and specific target finding are independently regulated in retinal axons. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
Topographic maps are a fundamental organizational feature of axonal connections in the brain. A prominent model for studying axial polarity and topographic map development is the vertebrate retina and its projection to the optic tectum (or superior colliculus). Linked processes are controlled by molecules that are graded along the axes of the retina and its target fields. Recent studies indicate that ephrin-As control the temporal-nasal mapping of the retina in the optic tectum/superior colliculus by regulating the topographically-specific interstitial branching of retinal axons along the anterior-posterior tectal axis. This branching is mediated by relative levels of EphA receptor repellent signaling. A major recent advance is the demonstration that EphB receptor forward signaling and ephrin-B reverse signaling mediate axon attraction to control dorsal-ventral retinal mapping along the lateral-medial tectal axis. In addition, several classes of regulatory proteins have been implicated in the control of the axial patterning of the retina, and its ultimate readout of topographic mapping.  相似文献   

7.
We used an in vivo transplant approach to examine how adult Schwann cells and olfactory ensheathing glia OEG influence the specificity of axon-target cell interactions when they are introduced into the CNS. Populations of either Schwann cells or OEG were mixed with dissociated fetal tectal cells presumptive superior colliculus and, after reaggregation, pieces were grafted onto newborn rat superior colliculus. Both glial types were prelabeled with lentiviral vectors encoding green fluorescent protein. Grafts rapidly established fiber connections with the host and retinal projections into co-grafts were assessed 656 days posttransplantation by injecting cholera toxin B into host eyes. In control rats that received pure dissociated-reaggregated tectal grafts, retinal ganglion cell RGC axons selectively innervated defined target areas, corresponding to the retinorecipient layer in normal superior colliculus. The pattern of RGC axon ingrowth into OEG containing co-grafts was similar to that in control grafts. However, in Schwann cell co-grafts there was reduced host retinal input into presumptive target areas and many RGC axons were scattered throughout the neuropil. Given that OEG in co-grafts had minimal impact on axon-target cell recognition, OEG might be an appropriate cell type for direct transplantation into injured neuropil when attempting to stimulate specific pathway reconstruction.  相似文献   

8.
The mechanism of topographic mapping of retinal ganglion cells to the midbrain was previously elucidated by the servomechanism model, which is based on the fact that cells expressing Eph-receptors respond specifically to surface expressing membrane-bound ephrin-ligands at a critical level. The retina has increased nasal-to-temporal gradient of Eph receptor-density, and the optic tectum/superior colliculus has increased rostral-to-caudal gradient of membrane-bound ephrin-ligand. An axon from the retina has an identification tag of a certain level of Eph-receptor density depending on its retinal position, and adheres to the site on the tectum/superior colliculus expressing ephrin-ligands at a critical ligand-density level. The servomechanism model rigidly defines positions of axon terminals on the midbrain. However, optic nerve regeneration experiments combined with halved retina or tectum show a plastic or flexible mapping (expansion, compression and transposition of tectal projections). To reconcile the discrepancy between the rigid model and the plastic behavior, competition between retinal axon terminals for a target site was introduced to the servomechanism. The servomechanism/competition model succeeded in computer simulations of the plastic mapping of retinal axons on the tectum. Recent experiments of upregulated ligand-density on the tectum during nerve regeneration and the role of axonal competition are discussed.  相似文献   

9.
In a cross species in vitro assay, growth cones from fish temporal retina elongating on laminin lanes were observed with time-lapse videomicroscopy as they encountered lanes and territories that carried membrane fragments from the chick caudal tectum. Caudal tectal membranes of adult fish and embryonic chick are known to possess a repellent guiding component for temporal retinal axons. The caudal membranes of chick exert a particularly strong influence on fish temporal axons. Contacts with chick caudal membranes by just a few filopodia and parts of the lamellipodia evoked a turning response away from the membrane lane of the entire growth cone. Contacts by filo- and lamellipodia over the entire circumference of the growth cone, however, caused invariably growth cone collapse and retraction. During growth cone turning and collapse and retraction, filopodia remained in contact with the tectal membrane fragments, suggesting strong membrane–filopodia adhesion simultaneous to growth cone repulsion by the repellent guiding component. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
Brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT-4/5) protein and mRNA are found in the neonatal rat retina and also in target sites such as the superficial layers of the superior colliculus. Both neurotrophins support neonatal retinal ganglion cell survival in vitro. In vivo, injections of recombinant BDNF and NT-4/5 reduce naturally occurring cell death as well as death induced by removal of the contralateral superior colliculus. In the latter case, the peak of retinal ganglion cell death occurs about 24 h postlesion. We wished to determine: whether a similar time-course of degeneration occurs after selective removal of target cells or depletion of target-derived trophic factors, and whether ganglion cell viability also depends on intraretinally derived neurotrophins. Retinal ganglion cell death was measured 24 and 48 h following injections of kainic acid or a mixture of BDNF and NT-4/5 blocking antibodies into the superior colliculus and 24 h after intraocular injection of the same antibodies. Retinotectally projecting ganglion cells were identified by retrograde labeling with the nucleophilic dye diamidino yellow. We show that collicular injections of either kainic acid or BDNF and NT-4/5 blocking antibodies significantly increased retinal ganglion cell death in the neonatal rat 24 h postinjection, death rates returning to normal by 48 h. This increase in death was greatest following collicular injections; however, death was also significantly increased 24 h following intravitreal antibody injection. Thus retinal ganglion cell survival during postnatal development is not only dependent upon trophic factors produced by central targets but may also be influenced by local intraretinal neurotrophin release.  相似文献   

11.
Brain‐derived neurotrophic factor (BDNF) and neurotrophin‐4/5 (NT‐4/5) protein and mRNA are found in the neonatal rat retina and also in target sites such as the superficial layers of the superior colliculus. Both neurotrophins support neonatal retinal ganglion cell survival in vitro. In vivo, injections of recombinant BDNF and NT‐4/5 reduce naturally occurring cell death as well as death induced by removal of the contralateral superior colliculus. In the latter case, the peak of retinal ganglion cell death occurs about 24 h postlesion. We wished to determine: whether a similar time‐course of degeneration occurs after selective removal of target cells or depletion of target‐derived trophic factors, and whether ganglion cell viability also depends on intraretinally derived neurotrophins. Retinal ganglion cell death was measured 24 and 48 h following injections of kainic acid or a mixture of BDNF and NT‐4/5 blocking antibodies into the superior colliculus and 24 h after intraocular injection of the same antibodies. Retinotectally projecting ganglion cells were identified by retrograde labeling with the nucleophilic dye diamidino yellow. We show that collicular injections of either kainic acid or BDNF and NT‐4/5 blocking antibodies significantly increased retinal ganglion cell death in the neonatal rat 24 h postinjection, death rates returning to normal by 48 h. This increase in death was greatest following collicular injections; however, death was also significantly increased 24 h following intravitreal antibody injection. Thus retinal ganglion cell survival during postnatal development is not only dependent upon trophic factors produced by central targets but may also be influenced by local intraretinal neurotrophin release. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 319–327, 2004  相似文献   

12.
Axons from retinae transplanted to the brain stem of neonatal rats exhibit two patterns of outgrowth that can be experimentally uncoupled from each other depending upon the location of the graft. Retinae placed close to the surface of the rostral brain stem (as much as 5 mm from the tectum) emit axons that project toward the superior colliculus along the subpial margin of the rostral brain stem. In contrast, axons from grafts embedded deep within the midbrain parenchyma project through the neuropil directly to the overlying superior colliculus, as long as the retina is within about 1 mm of the tectal surface. The present study shows that, as long as the retina is located outside the superior colliculus, and regardless of whether the axons derive from grafts in subpial or intraparenchymal locations, the earliest projections are oriented towards the superior colliculus. We have also found, however, that axons from retinae transplanted directly onto the superior colliculus can form projections that extend along the subpial margin away from the tectum. There are several major conclusions that may be drawn from these observations. First, the final tectopetal, transplant-derived projection does not result from the reorganization of an initially random outgrowth but is directed from the start toward an appropriate region of termination. Second, it appears that the interaction of retinal axons with a primary target alters the ability of the growth cone to respond to directional cues along the optic tract. Thus, although adding support to the proposal that optic axons attain the superior colliculus through an interaction involving substrates distributed along the optic tract and diffusible factors originating in the target region, it is increasingly clear that such interactions are likely to be complex and hierarchical.  相似文献   

13.
In the embryonic visual system, EphA receptors are expressed on both temporal and nasal retinal ganglion cell axons. Only the temporal axons, however, are sensitive to the low concentrations of ephrin-A ligands found in the anterior optic tectum. The poor responsiveness of nasal axons to ephrin-A ligands, which allows them to traverse the anterior tectum and reach their targets in the posterior tectum, has been attributed to constitutive activation of the EphA4 receptor expressed in these axons. EphA4 is highly expressed throughout the retina, but is preferentially phosphorylated on tyrosine (activated) in nasal retina. In a screen for EphA4 ligands expressed in chicken embryonic retina, we have identified a novel ephrin, ephrin-A6. Like ephrin-A5, ephrin-A6 has high affinity for EphA4 and activates this receptor in cultured retinal cells. In the embryonic day 8 (E8) chicken visual system, ephrin-A6 is predominantly expressed in the nasal retina and ephrin-A5 in the posterior tectum. Thus, ephrin-A6 has the properties of a ligand that activates the EphA4 receptor in nasal retinal cells. Ephrin-A6 binds with high affinity to several other EphA receptors as well and causes growth cone collapse in retinal explants, demonstrating that it can elicit biological responses in retinal neurons. Ephrin-A6 expression is high at E6 and E8, when retinal axons grow to their tectal targets, and gradually declines at later developmental stages. The asymmetric distribution of ephrin-A6 in retinal cells, and the time course of its expression, suggest that this new ephrin plays a role in the establishment of visual system topography.  相似文献   

14.
Topographic maps are a fundamental feature of sensory representations in nervous systems. The formation of one such map, defined by the connection of ganglion cells in the retina to their targets in the superior colliculus of the midbrain, is thought to depend upon an interaction between complementary gradients of retinal EphA receptors and collicular ephrin-A ligands. We have tested this hypothesis by using gene targeting to elevate EphA receptor expression in a subset of mouse ganglion cells, thereby producing two intermingled ganglion cell populations that express distinct EphA receptor gradients. We find that these two populations form separate maps in the colliculus, which can be predicted as a function of the net EphA receptor level that a given ganglion cell expresses relative to its neighbors.  相似文献   

15.
Membranes from posterior and anterior thirds of the chick optic tectum were added to explants from nasal and temporal retina. Posterior membranes, and to a lesser extent anterior membranes, cause temporal growth cones to collapse and their axonal processes to retract. Neither tectal source has an effect on nasal growth cones. We interpret these results to mean that there is a tectal activity, stronger in the posterior than the anterior region of the tectum, which helps guide growth cones during the development of the retinotectal map. We believe that in vivo this activity helps to steer temporal growth cones away from the posterior tectum. Nasal growth cones, which must map to the posterior tectum, are resistant to it. In vitro, when posterior membranes contact temporal growth cones over their surface, filopodia and lamellipodia withdraw rapidly. This leads to loss of contact between the growth cone and the substrate, followed by collapse.  相似文献   

16.
D K Simon  D D O'Leary 《Neuron》1992,9(5):977-989
We show that rat retinal ganglion cell axons exhibit no topographic specificity in growth along the rostral-caudal axis of the embryonic superior colliculus (SC). Position-related, morphological differences are not found between temporal and nasal axon growth cones. However, embryonic retinal axons respond in vitro to a position-dependent molecular property of SC membranes. In vivo, regional specificity in side branching is the earliest indication that axons make topographic distinctions along the rostral-caudal SC axis. Our contrasting in vivo and in vitro results indicate that molecules encoding rostral-caudal position in the SC neither guide nor restrict retinal axon growth, but may promote the development of topographic connections by controlling specificity in the extension or stabilization of branches.  相似文献   

17.
18.
Programmed cell death is widespread during the development of the central nervous system and serves multiple purposes including the establishment of neural connections. In the mouse retina a substantial reduction of retinal ganglion cells (RGCs) occurs during the first postnatal week, coinciding with the formation of retinotopic maps in the superior colliculus (SC). We previously established a retino-collicular culture preparation which recapitulates the progressive topographic ordering of RGC projections during early post-natal life. Here, we questioned whether this model could also be suitable to examine the mechanisms underlying developmental cell death of RGCs. Brn3a was used as a marker of the RGCs. A developmental decline in the number of Brn3a-immunolabelled neurons was found in the retinal explant with a timing that paralleled that observed in vivo. In contrast, the density of photoreceptors or of starburst amacrine cells increased, mimicking the evolution of these cell populations in vivo. Blockade of neural activity with tetrodotoxin increased the number of surviving Brn3a-labelled neurons in the retinal explant, as did the increase in target availability when one retinal explant was confronted with 2 or 4 collicular slices. Thus, this ex vivo model reproduces the developmental reduction of RGCs and recapitulates its regulation by neural activity and target availability. It therefore offers a simple way to analyze developmental cell death in this classic system. Using this model, we show that ephrin-A signaling does not participate to the regulation of the Brn3a population size in the retina, indicating that eprhin-A-mediated elimination of exuberant projections does not involve developmental cell death.  相似文献   

19.
An assay is described that can measure the rates of adhesion of isotopically labeled cell bodies from either the dorsal or ventral regions of the chick embryo retina to dorsal and ventral tectal halves. Immediately after dissociation of the retina, both ventral and dorsal retinal cells adhere preferentially to ventral tectal halves. With increasing time after dissociation, however, the preference of the ventral retinal cells shifts to dorsal tectal halves. The dorsal retinal cells continue to show a specificity for ventral tectal halves regardless of the length of time after their dissociation.When the developmental age of the tectal halves is varied from 8–14 days, there is no change in the specificities shown by retinal cells toward these tecta.When retinal age is varied, ventral retinal cells do not adhere preferentially to dorsal tecta until day 6 and older. Dorsal retinas show their specificity toward ventral tecta as early as day three.Control experiments include the use of nonretinal tissues, noninnervated tectal halves and pigmented retinal cells.  相似文献   

20.
Quantitative studies of ontogenetic changes in the levels of brain-derived neurotrophic factor (BDNF) mRNA and its effector, BDNF protein, are not available for the retinal projection system. We used an electrochemiluminescence immunoassay to measure developmental changes in the tissue concentration of BDNF within the hamster retina and superior colliculus (SC). In the SC, we first detected BDNF (about 9 pg/mg tissue) on embryonic day 14 (E14). BDNF protein concentration in the SC rises about fourfold between (E14) and postnatal day 4 (P4), remains at a plateau through P15, then declines by about one-third to attain its adult level by P18. By contrast, BDNF protein concentration in the retina remains low (about 1 pg/mg tissue) through P12, then increases 4.5-fold to attain its adult level on P18. The developmental changes in retinal and collicular BDNF protein concentrations are temporally correlated with multiple events in the structural and functional maturation of the hamster retinal projection system. Our data suggest roles for BDNF in the cellular mechanisms underlying some of these events and are crucial to the design of experiments to examine those roles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号