首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One fundamental question in cell biology is how mechanical stresses are distributed inside the cytoplasm. Recently we have developed a synchronous detection approach to map cytoplasmic displacements and stresses using yellow fluorescent protein tagged mitochondria as fiducial markers of the cytoskeleton (CSK) in response to a localized load applied via an RGD-coated magnetic bead (7). We have shown that stresses are propagated to remote sites in the cytoplasm, a finding that contradicts continuum model predictions. Here we show that long distance force propagation in the cytoplasm was abolished when the contractile prestress in the CSK was lowered by relaxing agents and enhanced when the prestress was increased by contractile agonists. Surprisingly, when the loading frequency was varied from 0.03 Hz to 30 Hz, the total area of induced displacements (an index of the extent of stress propagation) first increased with loading frequency and then decreased with loading frequency. These results demonstrate that the long distance force propagation in living adherent cells might be controlled by the level of contractile prestress in the CSK and by the loading frequency.  相似文献   

2.
We describe a three-dimensional magnetic twisting device that is useful in characterizing the mechanical properties of cells. With the use of three pairs of orthogonally aligned coils, oscillatory mechanical torque was applied to magnetic beads about any chosen axis. Frequencies up to 1 kHz could be attained. Cell deformation was measured in response to torque applied via an RGD-coated, surface-bound magnetic bead. In both unpatterned and micropatterned elongated cells on extracellular matrix, the mechanical stiffness transverse to the long axis of the cell was less than half that parallel to the long axis. Elongated cells on poly-L-lysine lost stress fibers and exhibited little mechanical anisotropy; disrupting the actin cytoskeleton or decreasing cytoskeletal tension substantially decreased the anisotropy. These results suggest that mechanical anisotropy originates from intrinsic cytoskeletal tension within the stress fibers. Deformation patterns of the cytoskeleton and the nucleolus were sensitive to loading direction, suggesting anisotropic mechanical signaling. This technology may be useful for elucidating the structural basis of mechanotransduction. cytoskeleton; prestress; stress fibers; mechanotransduction; mechanical deformation  相似文献   

3.
We describe a novel synchronous detection approach to map the transmission of mechanical stresses within the cytoplasm of an adherent cell. Using fluorescent protein-labeled mitochondria or cytoskeletal components as fiducial markers, we measured displacements and computed stresses in the cytoskeleton of a living cell plated on extracellular matrix molecules that arise in response to a small, external localized oscillatory load applied to transmembrane receptors on the apical cell surface. Induced synchronous displacements, stresses, and phase lags were found to be concentrated at sites quite remote from the localized load and were modulated by the preexisting tensile stress (prestress) in the cytoskeleton. Stresses applied at the apical surface also resulted in displacements of focal adhesion sites at the cell base. Cytoskeletal anisotropy was revealed by differential phase lags in X vs. Y directions. Displacements and stresses in the cytoskeleton of a cell plated on poly-L-lysine decayed quickly and were not concentrated at remote sites. These data indicate that mechanical forces are transferred across discrete cytoskeletal elements over long distances through the cytoplasm in the living adherent cell. mechanical forces; deformation; focal adhesion; microfilament  相似文献   

4.
Wang K  Sun D 《Journal of biomechanics》2012,45(11):1900-1908
A new actin cytoskeleton microstructural model based on the semiflexible polymer nature of the actin filament is proposed. The relationship between the stretching force and the mechanical properties of cells was examined. Experiments on deforming hematopoietic cells with distinct primitiveness from normal and leukemic sources were conducted via optical tweezer manipulation at single-cell level. The modeling results were demonstrated to be in good agreement with the experimental data. We characterized how the structural properties of the actin cytoskeleton, such as prestress, density of cross-links, and actin concentration, affect the mechanical behavior of cells based on the proposed model. Increasing prestress, actin concentration, and density of cross-links reduced cell deformation, and the cell also exhibited strain stiffening behavior with an increase in the stretching force. Compared with existing models, the proposed model exhibits a distinct feature in probing the influence of semiflexible polymer nature of the actin filament on cell mechanical behavior.  相似文献   

5.
We have developed a three-dimensional random network model of the intracellular actin cytoskeleton and have used it to study the role of the cytoskeleton in mechanotransduction and nucleus deformation. We use the model to predict the deformation of the nucleus when mechanical stresses applied on the plasma membrane are propagated through the random cytoskeletal network to the nucleus membrane. We found that our results agree with previous experiments utilizing micropipette pulling. Therefore, we propose that stress propagation through the random cytoskeletal network can be a mechanism to effect nucleus deformation, without invoking any biochemical signaling activity. Using our model, we also predict how nucleus strain and its relative displacement within the cytosol vary with varying concentrations of actin filaments and actin-binding proteins. We find that nucleus strain varies in a sigmoidal manner with actin filament concentration, while there exists an optimal concentration of actin-binding proteins that maximize nucleus displacement. We provide a theoretical analysis for these nonlinearities in terms of the connectivity of the random cytoskeletal network. Finally, we discuss laser ablation experiments that can be performed to validate these results in order to advance our understanding of the role of the cytoskeleton in mechanotransduction.  相似文献   

6.
Endothelial cells possess a mechanical network connecting adhesions on the basal surface, the cytoskeleton, and the nucleus. Transmission of force at adhesions via this pathway can deform the nucleus, ultimately resulting in an alteration of gene expression and other cellular changes (mechanotransduction). Previously, we measured cell adhesion area and apparent nuclear stretch during endothelial cell rounding. Here, we reconstruct the stress map of the nucleus from the observed strains using finite-element modeling. To simulate the disruption of adhesions, we prescribe displacement boundary conditions at the basal surface of the axisymmetric model cell. We consider different scenarios of the cytoskeletal arrangement, and represent the cytoskeleton as either discrete fibers or as an effective homogeneous layer When the nucleus is in the initial (spread) state, cytoskeletal tension holds the nucleus in an elongated, ellipsoidal configuration. Loss of cytoskeletal tension during cell rounding is represented by reactive forces acting on the nucleus in the model. In our simulations of cell rounding, we found that, for both representations of the cytoskeleton, the loss of cytoskeletal tension contributed more to the observed nuclear deformation than passive properties. Since the simulations make no assumption about the heterogeneity of the nucleus, the stress components both within and on the surface of the nucleus were calculated. The nuclear stress map showed that the nucleus experiences stress on the order of magnitude that can be significant for the function of DNA molecules and chromatin fibers. This study of endothelial cell mechanobiology suggests the possibility that mechanotransduction could result, in part, from nuclear deformation, and may be relevant to angiogenesis, wound healing, and endothelial barrier dysfunction.  相似文献   

7.
Hwang Y  Barakat AI 《PloS one》2012,7(4):e35343
Transmission of mechanical stimuli through the actin cytoskeleton has been proposed as a mechanism for rapid long-distance mechanotransduction in cells; however, a quantitative understanding of the dynamics of this transmission and the physical factors governing it remains lacking. Two key features of the actin cytoskeleton are its viscoelastic nature and the presence of prestress due to actomyosin motor activity. We develop a model of mechanical signal transmission through prestressed viscoelastic actin stress fibers that directly connect the cell surface to the nucleus. The analysis considers both temporally stationary and oscillatory mechanical signals and accounts for cytosolic drag on the stress fibers. To elucidate the physical parameters that govern mechanical signal transmission, we initially focus on the highly simplified case of a single stress fiber. The results demonstrate that the dynamics of mechanical signal transmission depend on whether the applied force leads to transverse or axial motion of the stress fiber. For transverse motion, mechanical signal transmission is dominated by prestress while fiber elasticity has a negligible effect. Conversely, signal transmission for axial motion is mediated uniquely by elasticity due to the absence of a prestress restoring force. Mechanical signal transmission is significantly delayed by stress fiber material viscosity, while cytosolic damping becomes important only for longer stress fibers. Only transverse motion yields the rapid and long-distance mechanical signal transmission dynamics observed experimentally. For simple networks of stress fibers, mechanical signals are transmitted rapidly to the nucleus when the fibers are oriented largely orthogonal to the applied force, whereas the presence of fibers parallel to the applied force slows down mechanical signal transmission significantly. The present results suggest that cytoskeletal prestress mediates rapid mechanical signal transmission and allows temporally oscillatory signals in the physiological frequency range to travel a long distance without significant decay due to material viscosity and/or cytosolic drag.  相似文献   

8.
Maintaining physical connections between the nucleus and the cytoskeleton is important for many cellular processes that require coordinated movement and positioning of the nucleus. Nucleo-cytoskeletal coupling is also necessary to transmit extracellular mechanical stimuli across the cytoskeleton to the nucleus, where they may initiate mechanotransduction events. The LINC (Linker of Nucleoskeleton and Cytoskeleton) complex, formed by the interaction of nesprins and SUN proteins at the nuclear envelope, can bind to nuclear and cytoskeletal elements; however, its functional importance in transmitting intracellular forces has never been directly tested. This question is particularly relevant since recent findings have linked nesprin mutations to muscular dystrophy and dilated cardiomyopathy. Using biophysical assays to assess intracellular force transmission and associated cellular functions, we identified the LINC complex as a critical component for nucleo-cytoskeletal force transmission. Disruption of the LINC complex caused impaired propagation of intracellular forces and disturbed organization of the perinuclear actin and intermediate filament networks. Although mechanically induced activation of mechanosensitive genes was normal (suggesting that nuclear deformation is not required for mechanotransduction signaling) cells exhibited other severe functional defects after LINC complex disruption; nuclear positioning and cell polarization were impaired in migrating cells and in cells plated on micropatterned substrates, and cell migration speed and persistence time were significantly reduced. Taken together, our findings suggest that the LINC complex is critical for nucleo-cytoskeletal force transmission and that LINC complex disruption can result in defects in cellular structure and function that may contribute to the development of muscular dystrophies and cardiomyopathies.  相似文献   

9.
The tensegrity hypothesis holds that the cytoskeleton is a structure whose shape is stabilized predominantly by the tensile stresses borne by filamentous structures. Accordingly, cell stiffness must increase in proportion with the level of the tensile stress, which is called the prestress. Here we have tested that prediction in adherent human airway smooth muscle (HASM) cells. Traction microscopy was used to measure the distribution of contractile stresses arising at the interface between each cell and its substrate; this distribution is called the traction field. Because the traction field must be balanced by tensile stresses within the cell body, the prestress could be computed. Cell stiffness (G) was measured by oscillatory magnetic twisting cytometry. As the contractile state of the cell was modulated with graded concentrations of relaxing or contracting agonists (isoproterenol or histamine, respectively), the mean prestress ((t)) ranged from 350 to 1,900 Pa. Over that range, cell stiffness increased linearly with the prestress: G (Pa) = 0.18(t) + 92. While this association does not necessarily preclude other interpretations, it is the hallmark of systems that secure shape stability mainly through the prestress. Regardless of mechanism, these data establish a strong association between stiffness of HASM cells and the level of tensile stress within the cytoskeleton.  相似文献   

10.
The synthesis and assembly of ribosomal subunits take place in the nucleolus. The nucleolus forms in the nucleus around the repeated ribosomal gene clusters and undergoes cyclic changes during the cell cycle. Although the nucleolus is easily visualized by light microscopy of cells in vitro, the nucleolus has not been imaged in cells in vivo. We report here development of a mouse model to visualize the nucleolus cycle of cancer cells in live mice. HT-1080 human fibrosarcoma cells were labeled in the nucleus with histone H2B-GFP and with retroviral RFP in the cytoplasm. The nucleolus was visualized by contrast to the fluorescence of GFP expressed in the nucleus. HT-1080 dual-color cells were seeded on the surface of a skin-flap of nude mice. The inside surface of the skin-flap was directly imaged with a laser scanning microscope 24 hours after seeding. The nucleoli of the cancer cells were clearly imaged in real-time. The appearance of the nucleoli changed dramatically during the cell cycle. During mitosis, the nucleolus disappeared. After mitosis, the nucleoli decreased in number and increased in size. The nucleolus appears to have a major role in cell cycle regulation effected at least in part by sequestering proteins which affect cell cycle progression. Nucleolar imaging could be used for more precise determination of cancer-cell position in the cell cycle in vivo.  相似文献   

11.
We investigated the mechanotransduction pathway in endothelial cells between their nucleus and adhesions to the extracellular matrix. First, we measured nuclear deformations in response to alterations of cell shape as cells detach from a flat surface. We found that the nuclear deformation appeared to be in direct and immediate response to alterations of the cell adhesion area. The nucleus was then treated as a neo-Hookean compressible material, and we estimated the stress associated with the cytoskeleton and acting on the nucleus during cell rounding. With the obtained stress field, we estimated the magnitude of the forces deforming the nucleus. Considering the initial and final components of this adhesion-cytoskeleton-nucleus force transmission pathway, we found our estimate for the internal forces acting on the nucleus to be on the same order of magnitude as previously measured traction forces, suggesting a direct mechanical link between adhesions and the nucleus.  相似文献   

12.
Small heat shock proteins (shsps) are molecular chaperones that are inducible by environmental stress. In this study, immunocytochemical analysis and laser scanning confocal microscopy revealed that the shsp family, hsp30, was localized primarily in the cytoplasm of Xenopus A6 kidney epithelial cells after heat shock or sodium arsenite treatment. Heat shock-induced hsp30 was enriched in the perinuclear region with some immunostaining in the nucleus but not in the nucleolus. In sodium arsenite-treated cells hsp30 was enriched towards the cytoplasmic periphery as well as showing some immunostaining in the nucleus. At higher heat shock temperatures (35 degrees C) or after 10 microM sodium arsenite treatment, the actin cytoskeleton displayed some disorganization that co-localized with areas of hsp30 enrichment. Treatment of A6 cells with 50 microM sodium arsenite induced a collapse of the cytoskeleton around the nucleus. These results coupled with previous studies suggest that stress-inducible hsp30 acts as a molecular chaperone primarily in the cytoplasm and may interact with cytoskeletal proteins.  相似文献   

13.
Using a multiple-point sheet sensor (MSS), load and contact area were directly measured for compression of four different foods. The MSS provided temporal and spatial changes in stress applied on the sample surface during the testing. The sum of load value detected by the MSS corresponded to the load measured by a universal testing machine during the compression. The contact area between a flat probe and food surface varied with the variety of foods even though under a small strain, and increased as compression strain increased. The active stress, that is, the load divided by the contact area, was different from conventional stress, that is, the load divided by the initial cross-sectional area. The value of active stress provided a better explanation of textural characteristics of food, because texture is often sensed under a large deformation and mixed assessment of mechanical and geometrical properties.  相似文献   

14.
Nucleolus: the fascinating nuclear body   总被引:1,自引:0,他引:1  
Nucleoli are the prominent contrasted structures of the cell nucleus. In the nucleolus, ribosomal RNAs are synthesized, processed and assembled with ribosomal proteins. RNA polymerase I synthesizes the ribosomal RNAs and this activity is cell cycle regulated. The nucleolus reveals the functional organization of the nucleus in which the compartmentation of the different steps of ribosome biogenesis is observed whereas the nucleolar machineries are in permanent exchange with the nucleoplasm and other nuclear bodies. After mitosis, nucleolar assembly is a time and space regulated process controlled by the cell cycle. In addition, by generating a large volume in the nucleus with apparently no RNA polymerase II activity, the nucleolus creates a domain of retention/sequestration of molecules normally active outside the nucleolus. Viruses interact with the nucleolus and recruit nucleolar proteins to facilitate virus replication. The nucleolus is also a sensor of stress due to the redistribution of the ribosomal proteins in the nucleoplasm by nucleolus disruption. The nucleolus plays several crucial functions in the nucleus: in addition to its function as ribosome factory of the cells it is a multifunctional nuclear domain, and nucleolar activity is linked with several pathologies. Perspectives on the evolution of this research area are proposed.  相似文献   

15.
The cytoskeleton, capsule and cell ultrastructure were studied during the cell cycle of Cryptococcus laurentii. In an encapsulated strain, cytoplasmic microtubules and a mitotic spindle were detected. Mitosis was preceded by migration of the nucleus into the bud. F-actin failed to be visualised by rhodamine-phalloidin (RhPh) in encapsulated cells and therefore an acapsular strain was used. The following actin structures were found: actin dots, actin cables and cytokinetic ring. Ultrastructural studies showed the presence of a nucleus in the bud before mitosis. A collar-shaped structure was seen at the base of bud emergence. A lamellar cell wall and a rough outer surface of the cells were detected. Cytoskeletal structures found in C. laurentii are similar to those in Cryptococcus neoformans, which is a serious human pathogen.  相似文献   

16.
We develop a computational model to compare the relative importance of unbinding and unfolding of actin cross-linking proteins (ACPs) in the dynamic properties of the actin cytoskeleton. We show that in the strain-stiffening regime with typical physiological and experimental strain rates, unbinding events are predominant with negligible unfolding. ACPs unbound by greater forces experience larger displacements, with a tendency to rebind to different filaments. At constant strain, stress relaxes to physiological levels by unbinding only—not unfolding—of ACPs, which is consistent with experiments. Also, rebinding of ACPs dampens full relaxation of stress. When the network is allowed to return to a stress-free state after shear deformation, plastic deformation is observed only with unbinding. These results suggest that despite the possibility of unfolding, unbinding of ACPs is the major determinant for the rheology of the actin network.  相似文献   

17.
用冷冻断裂法在扫描电镜下研究了洋葱(Allium cepa)根端分生组织细胞内部的三维结构。采用了两种固定方法。冷冻断裂前只用1%锇酸固定的材料容易在细胞质和核之间断开,而用卡诺固定液(无水乙醇:冰醋酸3:1)前固定,然后再用1%锇酸固定的材料容易使细胞核断裂。前一固定方法适于研究细胞质的内部结构(细胞骨架的纤维、线粒体、内质网等及其三维分布关系):后一固定方法适于研究核内结构(染色质、核仁、核基质纤维)的三维形象,特别是核仁纤维中心染色质的三维结构。  相似文献   

18.
Three-dimensional structures of meristematic cells of Allium cepa were studied using freeze-fracture method under the scanning electron microscope. Two fixation procedures were used. The cells were often fractured between eytoplasm and nucleus when the materials were fixed in 1% OsO4 alone before freeze fracture, whereas the nuclei, were frequently fractured if the materials were fixed first in Carnoy's, solution (ethanol: acetic acid=3:l) and then in 1% OsO4 before freeze fracture. The former fixation procedure is suitable for the study of the interior structures of cytoplasm such as cytoskeleton fibres, mitochondria, endoplasmic reticulum and their three-dimensional topography. The latter fixation method is suitable for the study of interior structures of nucleus such as chromatin, nucleoli, nuclear matrix filaments and their 3-dimensional architectures, especially the 3-dimensional structures of chromatin in fibrillar centre of the nucleolus.  相似文献   

19.
The mechanism by which mechanical stimulation on osteocytes results in biochemical signals that initiate the remodeling process inside living bone tissue is largely unknown. Even the type of stimulation acting on these cells is not yet clearly identified. However, the cytoskeleton of osteocytes is suggested to play a major role in the mechanosensory process due to the direct connection to the nucleus. In this paper, a computational approach to model and simulate the cell structure of osteocytes based on self-stabilizing tensegrity structures is suggested. The computational model of the cell consists of the major components with respect to mechanical aspects: the integrins that connect the cell with the extracellular bone matrix, and different types of protein fibers (microtubules and intermediate filaments) that form the cytoskeleton, the membrane-cytoskeleton (microfilaments), the nucleus and the centrosome. The proposed geometrical cell models represent the cell in its physiological environment which is necessary in order to give a statement on the cell behavior in vivo. Studies on the mechanical response of osteocytes after physiological loading and in particular the mechanical response of the nucleus show that the load acting on the nucleus is rising with increasing deformation applied to the integrins.  相似文献   

20.
Mechanical stress affects and regulates many aspects of the cell, including morphology, growth, differentiation, gene expression and apoptosis. In this study we show how mechanical stress perturbs the intracellular structures of the cell and induces mechanical responses. In order to correlate mechanical perturbations to cellular responses, we used a combined fluorescence-atomic force microscope (AFM) to produce well defined nanomechanical perturbations of 10 nN while simultaneously tracking the real-time motion of fluorescently labelled mitochondria in live cells. The spatial displacement of the organelles in response to applied loads demonstrates the highly dynamic mechanical response of mitochondria in fibroblast cells. The average displacement of all mitochondrial structures analysed showed an increase of approximately 40%, post-perturbation ( approximately 160 nm in comparison to basal displacements of approximately 110 nm). These results show that local forces can produce organelle displacements at locations far from the initial point of contact (up to approximately 40 microm). In order to examine the role of the cytoskeleton in force transmission and its effect on mitochondrial displacements, both the actin and microtubule cytoskeleton were disrupted using Cytochalasin D and Nocodazole, respectively. Our results show that there is no significant change in mitochondrial displacement following indentation after such treatments. These results demonstrate the role of the cytoskeleton in force transmission through the cell and on mitochondrial displacements. In addition, it is suggested that care must be taken when performing mechanical experiments on living cells with the AFM, as these local mechanical perturbations may have significant structural and even biochemical effects on the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号