首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The membrane of Rhodospirillum rubrum chromatophores was disintegrated with mild detergents (cholate and deoxycholate) in order to study the spatial arrangement of the functional proteins in the photochemical apparatus and the electron transport system in the membrane. 2. The components solubilized from the membrane by a mixture of cholate and deoxycholate (C-DOC) were separated into four fractions by molecular-sieve chromatography in the presence of C-DOC; they were designated as F1, F2, F3, and F4 in the order of elution. The fractions were further purified by repeated molecular-sieve chromatography in the presence of C-DOC until each fraction was chromatographically homogeneous. 3. F1 appeared to be conjugated forms of F2. 4. The purified F2 was composed of a rigid complex having a weight of 7 X 10(5) daltons, containing approximately 10 different kinds of protein species with molecular weights of 3.8 X 10(4), 3.6 X 10(4), 3.5 X 10(4), 2.8 X 10(4), 2.7 X 10(4), 2.6 X 10(4), 1.3 X 10(4), 1.2 X 10(4), 1.1 X 10(4), and 1.0 X 10(4). The complex contained 33 bacteriochlorophylls, 4 iron atoms, and 90 phosphates, but no cytochrome, ubiquinone, or phospholipid. It showed the same reaction center activity as chromatophores, indicating that the complex was a unit of the photochemical apparatus (photoreaction unit). Each chromatophore of average size was estimated to possess about 24 photoreaction units. 5. The purified F3 showed an absorbance spectrum characteristic of reaction centers, and contained 3.4 bacteriochlorophylls, 2.0 bacteriopheophytins, and 1.9 acid-labile iron atoms, but no cytochrome or ubiquinone (C-DOC reaction center). It had a weight of 1.2 X 10(5) daltons, and the main components were 4 protein species with molecular weights of 2.8 X 10(4), 2.7 X 10(4), 2.6 X 10(4), and 1.0 X 10(4). 6. The purified F4 showed a molecular weight of about 11,000, and contained one mole of ubiquinone-10 per mole (ubiquinone-10 protein). 7. The reaction center activity of C-DOC reaction centers was stimulated by ubiquinone-10 protein. In addition, the reaction center oxidized reduced cytochrome c2 in the light, provided that ubiquinone-10 protein was present (photo-oxidase activity).  相似文献   

2.
A procedure for the isolation of highly purified bacterial photosynthetic membranes from Rhodopseudomonas viridis is described. The purity of the final membrane fraction has been confirmed by electron microscopy. Seven major polypeptide bands are associated with the photosynthetic membranes, and all seven are resistant to solubilization in Triton X-100 detergent. Two pigmented bands with apparent molecular weights of 44K and 41K are thought to be cytochromes. The three polypeptides with apparent molecular weights of 38K, 32K, and 28K have been reported in reaction center preparations of other laboratories. Two low-molecular-weight (16K and 11K) bands bind bacteriochlorophyll b and may represent light-harvesting bacteriochlorophyll-protein complexes. The structures that were isolated seem to represent complete photosynthetic membranes, consisting of reaction center, electron transport, and light-harvesting components, all arranged in the regular lattice characteristic of viridis. Selective proteolysis of these membranes indicates that all membrane components are accessible to digestion by trypsin and pronase, except for the light-harvesting complexes.  相似文献   

3.
The major route for protein export or membrane integration in bacteria occurs via the Sec-dependent transport apparatus. The core complex in the inner membrane, consisting of SecYEG, forms a protein-conducting channel, while the ATPase SecA drives translocation of substrate across the membrane. The SecYEG complex from Escherichia coli was overexpressed, purified and crystallized in two dimensions. A 9 A projection structure was calculated using electron cryo-microscopy. The structure exhibits P12(1) symmetry, having two asymmetric units inverted with respect to one another in the unit cell. The map shows elements of secondary structure that appear to be transmembrane helices. The crystallized form of SecYEG is too small to comprise the translocation channel and does not contain a large pore seen in other studies. In detergent solution, the SecYEG complex displays an equilibrium between monomeric and tetrameric forms. Our results therefore indicate that, unlike other known channels, the SecYEG complex can exist as both an assembled channel and an unassembled smaller unit, suggesting that transitions between the two states occur during a functional cycle.  相似文献   

4.
Structure of Rhodopseudomonas sphaeroides R-26 reaction center   总被引:30,自引:0,他引:30  
The molecular replacement method has been successfully used to provide a structure for the photosynthetic reaction center of Rhodopseudomonas sphaeroides at 3.7 A resolution. Atomic coordinates derived from the R. viridis reaction center were used in the search structure. The crystallographic R-factor is 0.39 for reflections between 8 and 3.7 A. Validity of the resulting model is further suggested by the visualization of amino acid side chains not included in the R. viridis search structure, and by the arrangements of the reaction centers in the unit cell. In the initial calculations quinones or pigments were not included; nevertheless, in the resulting electron density map, electron density for both quinones QA and QB appears along with the bacteriochlorophylls and bacteriopheophytins. Kinetic analysis of the charge recombination shows that the secondary quinone is fully functional in the R. sphaeroides crystal.  相似文献   

5.
A gene coding for the photosynthetic reaction center-bound cytochrome subunit, pufC, of Blastochloris viridis, which belongs to the alpha-purple bacteria, was introduced into Rubrivivax gelatinosus, which belongs to the beta-purple bacteria. The cytochrome subunit of B. viridis was synthesized in the R. gelatinosus cells, in which the native pufC gene was knocked out, and formed a chimeric reaction center (RC) complex together with other subunits of R. gelatinosus. The transformant was able to grow photosynthetically. Rapid photo-oxidization of the hemes in the cytochrome subunit was observed in the membrane of the transformant. The soluble electron carrier, cytochrome c(2), isolated from B. viridis was a good electron donor to the chimeric RC. The redox midpoint potentials and the redox difference spectra of four hemes in the cytochrome subunit of the chimeric RC were almost identical with those in the B. viridis RC. The cytochrome subunit of B. viridis seems to retain its structure and function in the R. gelatinosus cell. The chimeric RC and its mutagenesis system should be useful for further studies about the cytochrome subunit of B. viridis.  相似文献   

6.
Five membrane proteins from Acholeplasma laidlawii have been previously purified on a large scale. These proteins have been used to establish the relationship between the precipitation lines obtained by crossed immunoelectrophoresis of solubilized cell membrane proteins from A. laidlawii in the presence of the neutral detergent Tween 20 or those obtained in the presence of the anionic detergent sodium deoxycholate. This relationship, which was unambiguously established for four of the five proteins, was determined by tandem or "parallel" crossed immunoelectrophoresis of the sodium deoxycholate-solubilized membrane together with the purified proteins. Membranes from strain A of A. laidlawii were composed of proteins, which were immunologically related to and probably identical to membrane proteins from strain B of this organism.  相似文献   

7.
Two-dimensional crystals have been prepared from the photosynthetic reaction center of Rhodopseudomonas viridis. Filtered images of these crystals show individual subunits approximately 4.5 nm in diameter arranged at a center-to-center distance of 6.4 nm. Our previous studies suggested that each subunit within such a sheet corresponds to a single photosynthetic reaction center. Air-dried and freeze-etched shadowed preparations of the crystals yield images which are quite different from negatively stained material. Rotary-shadowed surfaces of the crystals show rows of wedge-shaped particles separated by 3 nm furrows. Two such wedge-shaped particles occupy the 12.1 X 12.9 nm area in which four negatively stained subunits are normally visualized. Close analysis of these shadowed pictures suggests that both the shadowed and negatively stained images can be accounted for by a single model of subunit arrangement within the crystal. Within each 12.1 X 12.9 nm unit cell, two subunits are placed near one surface of the sheet, and two others are near the other surface. All four subunits are visible in negative stain. When the surface is shadowed, only the two subunits which project above the surface of the sheet accumulate appreciable amounts of the heavy metal shadow. Because of their close position, one subunit shades the other, forming the wedge-shaped appearance characteristic of the crystal. The only arrangement consistent with both shadowed and negatively stained images is one in which the two raised subunits occupy positions at either end of a diagonal across the unit cell. The analysis of shadowed images indicates that the plane group of the crystals is P22(1)2(1).  相似文献   

8.
By using Bio-Beads as a detergent-removing agent, it has been possible to produce detergent-depleted two-dimensional crystals of purified Ca-ATPase. The crystallinity and morphology of these different crystals were analyzed by electron microscopy under different experimental conditions. A lipid-to-protein ratio below 0.4 w/w was required for crystal formation. The rate of detergent removal critically affected crystal morphology, and large multilamellar crystalline sheets or wide unilamellar tubes were generated upon slow or fast detergent removal, respectively. Electron crystallographic analysis indicated unit cell parameters of a = 159 A, b = 54 A, and gamma = 90 degrees for both types of crystals, and projection maps at 15-A resolution were consistent with Ca-ATPase molecules alternately facing the two sides of the membrane. Crystal formation was also affected by the protein conformation. Indeed, tubular and multilamellar crystals both required the presence of Ca2+; the presence of ADP gave rise to another type of packing within the unit cell (a = 86 A, b = 77 A, and gamma = 90 degrees), while maintaining a bipolar orientation of the molecules within the bilayer. All of the results are discussed in terms of nucleation and crystal growth, and a model of crystallogenesis is proposed that may be generally true for asymmetrical proteins with a large hydrophilic cytoplasmic domain.  相似文献   

9.
Gap junctions forming extensive hexagonal crystalline sheets (unit cell dimension, a = 89 A) were obtained by mild mechanical disruption of plasma membranes from rat liver. The sheets were analysed in three dimensions by negative stain electron microscopy and Fourier image processing. The crystallographic symmetry was shown to approximate to the two-sided plane group p622, indicating that the sheets are composed of two equivalent, oppositely-facing membrane assemblies. The structure of the connexon in these near-to-native junctions is essentially the same as that found in detergent-extracted junctions, the subunits appearing slightly tilted tangential to the central six-fold axis and aligned almost perpendicular to the membrane plane.  相似文献   

10.
Electron-density maps for the crystal structures of membrane proteins often show features suggesting binding of lipids and/or detergent molecules on the hydrophobic surface, but usually it is difficult to identify the bound molecules. In our studies, heavy-atom-labelled phospholipids and detergents have been used to unequivocally identify these binding sites at the surfaces of test membrane proteins, the reaction centres from Rhodobacter sphaeroides and Blastochloris viridis. The generality of this method is discussed in the present article.  相似文献   

11.
A considerable interest exists currently in designing innovative strategies to produce two-dimensional crystals of membrane proteins that are amenable to structural analysis by electron crystallography. We have developed a protocol for crystallizing membrane protein that is derived from the classical lipid-layer two-dimensional crystallization at the air/water interface used so far for soluble proteins. Lipid derivatized with a Ni(2+)-chelating head group provided a general approach to crystallizing histidine-tagged transmembrane proteins. The processes of protein binding and two-dimensional crystallization were analyzed by electron microscopy, using two prototypic membrane proteins: FhuA, a high-affinity receptor from the outer membrane of Escherichia coli, and the F(0)F(1)-ATP synthase from thermophilic Bacillus PS3. Conditions were found to avoid solubilization of the lipid layer by the detergent present with the purified membrane proteins and thus to allow binding of micellar proteins to the functionalized lipid head groups. After detergent removal using polystyrene beads, membrane sheets of several hundreds of square micrometers were reconstituted at the interface. High protein density in these membrane sheets allowed further formation of planar two-dimensional crystals. We believe that this strategy represents a new promising alternative to conventional dialysis methods for membrane protein 2D crystallization, with the additional advantage of necessitating little purified protein.  相似文献   

12.
Native tubular membranes were purified from the purple non-sulfur bacterium Rhodobacter sphaeroides. These tubular structures contain all the membrane components of the photosynthetic apparatus, in the relative ratio of one cytochrome bc1 complex to two reaction centers, and approximately 24 bacteriochlorophyll molecules per reaction center. Electron micrographs of negative-stained membranes diffract up to 25 A and allow the calculation of a projection map at 20 A. The unit cell (a = 198 A, b = 120 A and gamma = 103 degrees) contains an elongated S-shaped supercomplex presenting a pseudo-2-fold symmetry. Comparison with density maps of isolated reaction center and light-harvesting complexes allowed interpretation of the projection map. Each supercomplex is composed of light-harvesting 1 complexes that take the form of two C-shaped structures of approximately 112 A in external diameter, facing each other on the open side and enclosing the two reaction centers. The remaining positive density is tentatively attributed to one cytochrome bc1 complex. These features shed new light on the association of the reaction center and the light-harvesting complexes. In particular, the organization of the light-harvesting complexes in C-shaped structures ensures an efficient exchange of ubihydroquinone/ubiquinone between the reaction center and the cytochrome bc1 complex.  相似文献   

13.
The oligomeric state of the chicken hepatic receptor for N-acetylglucosamine-terminated glycoproteins (the chicken hepatic lectin) has been examined in detergent solution, in various membrane preparations, and in hepatocytes. In detergent solution, the cross-linking reagent, 1,5-difluoro-2,4-dinitrobenzene produces covalent complexes containing up to six receptor polypeptides. This result, along with hydrodynamic studies of the receptor-detergent complex, indicates that the purified receptor is a hexamer. Analysis of large proteolytic fragments of the receptor reveals that portions of the receptor polypeptide near the membrane anchor are essential for hexamer stability. This analysis also demonstrates that each receptor polypeptide has an N-acetylglucosamine-binding site, indicating that the native hexameric receptor contains a cluster of six such sites. Immunoblot analysis of membrane fractions and cells cross-linked with 1,5-difluoro-2,4-dinitrobenzene or dimethyl adipimidate reveals that the receptor is also oligomeric in intact cells and in subcellular fractions representing cell surface and internalized receptor. Although the pattern of cross-linking observed in membranes differs from that observed with purified receptor, experiments indicate that the differences may be explained by the presence of membrane components which compete with receptor for reaction with cross-linking reagent. The presence of a cluster of carbohydrate-binding sites in the hepatocyte membrane can account for the preferential endocytosis of multivalent glycoprotein ligands by hepatocytes.  相似文献   

14.
Human butyrylcholinesterase (BChE; EC 3.1.1.8) is of particular interest because it hydrolyzes or scavenges a wide range of toxic compounds including cocaine, organophosphorus pesticides and nerve agents. The relative contribution of each N-linked glycan for the solubility, the stability and the secretion of the enzyme was investigated. A recombinant monomeric BChE lacking four out of nine N-glycosylation sites and the C-terminal oligomerization domain was stably expressed as a monomer in CHO cells. The purified recombinant BChE showed catalytic properties similar to those of the native enzyme. Tetragonal crystals suitable for X-ray crystallography studies were obtained; they were improved by recrystallization and found to diffract to 2.0 A resolution using synchrotron radiation. The crystals belong to the tetragonal space group I422 with unit cell dimensions a = b = 154.7 A, c = 124.9 A, giving a Vm of 2.73 A3 per Da (estimated 60% solvent) for a single molecule of recombinant BChE in the asymmetric unit. The crystal structure of butyrylcholinesterase will help elucidate unsolved issues concerning cholinesterase mechanisms in general.  相似文献   

15.
OxlT is a bacterial transporter protein with 12 transmembrane segments that belongs to the Major Facilitator Superfamily of transporters. It facilitates the exchange of oxalate and formate across the membrane of the Gram-negative bacterium Oxalobacter formigenes. From an electron crystallographic analysis of two-dimensional, tube-like crystals of OxlT, we have previously determined the three-dimensional structure of this transporter at 6.5 A resolution. Here, we report conditions to obtain crystalline, two-dimensional sheets of OxlT with diameters exceeding 2 microm. Images of the crystalline sheets were recorded at liquid nitrogen temperatures on a transmission electron microscope equipped with a field-emission gun, operated at 300 kV. Computed optical diffraction patterns from the best images display measurable reflections to about 3.4A, and electron diffraction patterns show spots to about 3.2 A resolution in the best cases. As in the case of the tube-like crystals, the new crystalline sheets also belong to the p22(1)2(1) symmetry group. However, the unit cell dimensions of 102.7A x 67.3 A are significantly smaller in one direction than those previously observed with the tube-like crystals that display unit cell dimensions of 100.3A x 79.0 A. Different regions of OxlT are involved in intermolecular contacts in the two types of crystals, and the improved resolution of the sheet crystals appears to be mainly attributable to this tighter packing of the monomers within the unit cell.  相似文献   

16.
In membrane protein biochemical and structural studies, detergents are used to mimic membrane environment and maintain functional, stable conformation of membrane proteins in the absence of lipid bilayers. However, detergent concentration, esp. molar ratio of membrane protein to detergent is usually unknown. Here, a gas chromatography–mass spectrometry selected ion monitoring (GC–MS-SIM) method was developed to quantify four detergents which are frequently used in membrane protein structural studies. To remove excessive detergents, a filtered centrifugation using Centricon tubes was applied. A membrane protein Ig-Beta fragment in four different detergent micelles was exemplified. Detergent concentrations in the upper and lower fraction of the Centricon tube were measured after each round of centrifugation. The results were very consistent to basic properties of detergent micelles in aqueous solvents. Therefore, coupling of GC–MS-SIM and detergent removal by Centricon tubes, detergents concentration, esp. molar ratio of membrane protein to detergent could be controlled, which will expedite membrane protein structural and biochemical studies.  相似文献   

17.
By detergent treatment of isolated photosynthetic membranes from maize chloroplasts, we have prepared two-dimensional crystals of the photosystem II complex. Two distinct crystal forms are produced by this treatment. Analysis of Fourier transforms of the crystals shows that each crystal type is formed from two inverted layers. Within the rectangular 17.8 x 26.7 nm unit cell of each layer is a tetrameric structure enclosing a two-fold symmetry axis, a result implying that the basic structural unit of photosystem II is dimeric. Tris-washing, which removes proteins associated with the oxygen-evolving apparatus from the inner surface of the photosynthetic membrane, causes a distinct change in the structure of these tetramers and reveals a dimeric core complex which may be directly associated with the photosystem II machinery.  相似文献   

18.
Quinol-fumarate reductase (QFR) from Escherichia coli is a membrane-bound four-subunit respiratory protein that shares many physical and catalytic properties with succinate-quinone oxidoreductase (EC 1.3.99.1) commonly referred to as Complex II. The E. coli QFR has been overexpressed using plasmid vectors so that more than 50% of the cytoplasmic membrane fraction is composed of the four-subunit enzyme complex. The growth characteristics required for optimal levels of expression with minimal degradation by host cell proteases and oxidation factors were determined for the strains harboring the recombinant plasmid. The enzyme is extracted from the enriched membrane fraction using the nonionic detergent Thesit (polyoxyethylene(9)dodecyl ether) in a monodisperse form and then purified by a combination of anion-exchange, perfusion, and gel filtration chromatography. The purified enzyme is highly active and contains all types of redox cofactors expected to be associated with the enzyme. Crystallization screening of the purified QFR by vapor diffusion resulted in the formation of crystals within 24 h using a sodium citrate buffer and polyethylene glycol precipitant. The crystals contain the complete four-subunit QFR complex, diffract to 3.3 A resolution, and were found to be in space group P2(1)2(1)2(1) with unit cell dimensions a = 96.6 A, b = 138.1 A, and c = 275.3 A. The purification and crystallization procedures are highly reproducible and the general procedure may prove useful for Complex IIs from other sources.  相似文献   

19.
The formation of vesicle-like structures (termed surfactosomes) and lamellar sheets from solutions containing ammonium perfluoroocanoate (APFO) is illustrated using conventional and cryo-transmission electron microscopy. It is shown how this detergent can be used for the solubilisation, reconstitution, and 2-D crystallisation of membrane proteins as demonstrated for the major protein of the membrane sector of the V-type H+-ATPase (16-kDa protein). Electron microscopical analysis of 2-D crystals of the 16-kDa protein (a = b = 13.0 ± 0.2 nm with γ = 90° and p4 projection symmetry) revealed a unit cell comprising four dimeric complexes of the 16-kDa protein the significance of which is discussed.  相似文献   

20.
An orthorhombic crystal form (P2(1)2(1)2(1)) of the reaction center from the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26 has been characterized. The crystals were grown from polyethylene glycol; the unit cell dimensions are a = 142.2 A, b = 139.6 A, and c = 78.7 A; and they contain one reaction center in each crystallographic asymmetric unit. The crystals diffract to at least 3.0 A resolution, and are suitable for detailed structural studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号