首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Recent studies using mice with genetically engineered gap junction protein connexin (Cx) genes have provided evidence that reduced gap-junctional coupling in ventricular cardiomyocytes predisposes to ventricular arrhythmia. However, the pathological processes of arrhythmogenesis due to abnormalities in gap junctions are poorly understood. We have postulated a hypothesis that dysfunction of gap junctions at the single-cell level may affect synchronization of calcium transients among cardiomyocytes. To examine this hypothesis, we developed a novel system in which gap-junctional intercellular communication in primary neonatal rat cardiomyocytes was inhibited by a mutated (Delta130-137) Cx43 fused with enhanced green fluorescent protein (Cx43-EGFP), and calcium transients were imaged in real time while the mutated Cx43-EGFP-expressing cardiomyocytes were identified. The mutated Cx43-EGFP inhibited dye coupling not only in the liver epithelial cell line IAR 20 but also in primary neonatal rat cardiomyocytes in a dominant-negative manner, whereas wild-type Cx43-EGFP made functional gap junctions in otherwise communication-deficient HeLa cells. The mutated Cx43-EGFP induced desynchronization of calcium transients among cardiomyocytes with significantly higher frequency than wild-type Cx43-EGFP. These results suggest that dysfunction of gap-junctional intercellular communication at the single-cell level could hamper synchronous beating among cardiomyocytes as a result of desynchronization of calcium transients.  相似文献   

2.
To examine the trafficking, assembly, and turnover of connexin43 (Cx43) in living cells, we used an enhanced red-shifted mutant of green fluorescent protein (GFP) to construct a Cx43-GFP chimera. When cDNA encoding Cx43-GFP was transfected into communication-competent normal rat kidney cells, Cx43-negative Madin-Darby canine kidney (MDCK) cells, or communication-deficient Neuro2A or HeLa cells, the fusion protein of predicted length was expressed, transported, and assembled into gap junctions that exhibited the classical pentalaminar profile. Dye transfer studies showed that Cx43-GFP formed functional gap junction channels when transfected into otherwise communication-deficient HeLa or Neuro2A cells. Live imaging of Cx43-GFP in MDCK cells revealed that many gap junction plaques remained relatively immobile, whereas others coalesced laterally within the plasma membrane. Time-lapse imaging of live MDCK cells also revealed that Cx43-GFP was transported via highly mobile transport intermediates that could be divided into two size classes of <0.5 microm and 0.5-1.5 microm. In some cases, the larger intracellular Cx43-GFP transport intermediates were observed to form from the internalization of gap junctions, whereas the smaller transport intermediates may represent other routes of trafficking to or from the plasma membrane. The localization of Cx43-GFP in two transport compartments suggests that the dynamic formation and turnover of connexins may involve at least two distinct pathways.  相似文献   

3.
Genetic component represents an important factor in the development of hypertension, which is known to be associated with changes in expression of vascular gap junction protein connexin 43 (Cx43). The aim of the study was to examine the distribution and expression of Cx43 in the aortic endothelium of adult normotensive Wistar rats (W), borderline hypertensive rats (BHR) and spontaneously hypertensive rats (SHR). Rings of the thoracic aorta were processed for immunofluorescence and Western blot analysis of endothelial Cx43 and for electron microscopy. Both, BHR and SHR exhibited significantly increased blood pressure vs. W (132+/-2 mm Hg and 185+/-3 mm Hg vs. 110+/-2 mm Hg). Reduced Cx43 immunofluorescence was observed in the endothelium of BHR and these alterations were more pronounced in SHR. Western blot analysis showed significant suppression of Cx43 expression in the aorta of both BHR (p<0.05) and SHR (p<0.001) vs. W. Electron microscopy revealed local subcellular alterations of interendothelial connections in BHR including extended tight junctions. These alterations were more frequent and marked in SHR. The results indicate that connexin 43 expression is reduced in the aortic endothelium already in prehypertensive period, which may affect cell-to-cell communication and thus participate in acceleration of hypertensive disease.  相似文献   

4.
Gap junction number and size vary widely in cardiac tissues with disparate conduction properties. Little is known about how tissue-specific patterns of intercellular junctions are established and regulated. To elucidate the relationship between gap junction channel protein expression and the structure of gap junctions, we analyzed Cx43 +/- mice, which have a genetic deficiency in expression of the major ventricular gap junction protein, connexin43 (Cx43). Quantitative confocal immunofluorescence microscopy revealed that diminished Cx43 signal in Cx43 +/- mice was due almost entirely to a reduction in the number of individual gap junctions (226 +/- 52 vs. 150 +/- 32 individual gap junctions/field in Cx43 +/+ and +/- ventricles, respectively; P < 0.05). The mean size of an individual gap junction was the same in both groups. Immunofluorescence results were confirmed with electron microscopic morphometry. Thus when connexin expression is diminished, ventricular myocytes become interconnected by a reduced number of large, normally sized gap junctions, rather than a normal number of smaller junctions. Maintenance of large gap junctions may be an adaptive response supporting safe ventricular conduction.  相似文献   

5.
The mechanisms underlying endothelium-dependent hyperpolarizing factor (EDHF) in the middle cerebral artery (MCA) remain largely unresolved. In particular, very little is known regarding the way in which the signal is transmitted from endothelium to smooth muscle. The present study tested the hypothesis that direct communication via myoendothelial gap junctions contributes to the EDHF response in the male rat MCA. EDHF-mediated dilations were elicited in rat MCAs by luminal application of ATP or UTP in the presence of Nomega-nitro-L-arginine methyl ester and indomethacin. Maximum dilation to luminal ATP (10(-4) M) was reduced significantly after incubation with a gap peptide cocktail (9 +/- 4%, n = 6) compared with a scrambled gap peptide cocktail (99 +/- 1%, n = 6, P < 0.05). A gap peptide cocktail had no effect on amplitude of endothelial cell hyperpolarization in response to 3 x 10(-5) M UTP (22 +/- 3 vs. 22 +/- 1 mV, n = 4), whereas smooth muscle cell hyperpolarization was significantly attenuated (17 +/- 1 vs. 6 +/- 1 mV, n = 4, P = 0.004). Connexin (Cx) 37 was localized to smooth muscle and Cx43 to endothelium, whereas Cx40 was found in endothelium and smooth muscle. Electron microscopy revealed the existence of frequent myoendothelial junctions. The total number of myoendothelial junctions per 5 microm of MCA sectioned was 2.5 +/- 0.5. Our results suggest that myoendothelial communication contributes to smooth muscle cell hyperpolarization and EDHF dilation in male rat MCA.  相似文献   

6.
The success of cellular cardiomyoplasty, a novel therapy for the repair of postischemic myocardium, depends on the anatomical integration of the engrafted cells with the resident cardiomyocytes. Our aim was to investigate the interaction between undifferentiated mouse skeletal myoblasts (C2C12 cells) and adult rat ventricular cardiomyocytes in an in vitro coculture model. Connexin43 (Cx43) expression, Lucifer yellow microinjection, Ca2+ transient propagation, and electrophysiological analysis demonstrated that myoblasts and cardiomyocytes were coupled by functional gap junctions. We also showed that cardiomyocytes upregulated gap junctional communication and expression of Cx43 in myoblasts. This effect required direct cell-to-cell contact between the two cell types and was potentiated by treatment with relaxin, a cardiotropic hormone with potential effects on cardiac development. Analysis of the gating properties of gap junctions by dual cell patch clamping showed that the copresence of cardiomyocytes in the cultures significantly increased the transjunctional current and conductance between myoblasts. Relaxin enhanced this effect in both the myoblast-myoblast and myoblast-cardiomyocyte cell pairs, likely acting not only on gap junction formation but also on the electrical properties of the preexisting channels. Our findings suggest that myoblasts and cardiomyocytes interact actively through gap junctions and that relaxin potentiates the intercellular coupling. A potential role for gap junctional communication in favoring the intercellular exchange of regulatory molecules, including Ca2+, in the modulation of myoblast differentiation is discussed. gap junctions; connexin43  相似文献   

7.
Communication between vascular smooth muscle (VSM) cells via low-resistance gap junctions may facilitate vascular function by synchronizing the contractile state of individual cells within the vessel wall. We hypothesized that inhibition of gap junctional communication would impair constrictor responses of mesenteric resistance arteries. Immunohistochemical experiments revealed positive staining for connexin 37 (Cx37) in both endothelium and smooth muscle of rat mesenteric arterioles, whereas connexin 43 (Cx43) immunoreactivity was not detected in the mesenteric vasculature. Administration of the gap junction inhibitory peptide Gap27, which targets Cx37 and Cx43, significantly diminished myogenic vasoconstriction (8.6 +/- 3.8% of passive diameter at 100 Torr) and changes in vessel wall intracellular [Ca2+] of mesenteric resistance arteries compared with vessels treated with either vehicle (physiological saline solution) (33.5 +/- 6.1%) or a control peptide (32.1 +/- 6.5%). Administration of 18alpha-glycyrrhetinic acid, structurally distinct from Gap27, also significantly attenuated myogenic constriction compared with its vehicle control (DMSO) (9.6 +/- 3.2% vs. 23.8 +/- 4.6%). In contrast, phenylephrine-induced vasoconstriction was not altered by gap junction blockers. Attenuated myogenic vasoconstriction resulting from inhibition of gap junctions persisted after disruption of the endothelium. In additional experiments, VSM cell membrane potential was recorded in mesenteric resistance arteries pressurized to 20 or 100 Torr. VSM membrane potential was depolarized at 100 Torr compared with 20 Torr. However, VSM cells in arteries treated with Gap27 were significantly hyperpolarized (-48.6 +/- 1.4 mV) at the higher pressure compared with vehicle (-41.4 +/- 1.5 mV) and Gap20-treated (-38.4 +/- 0.7 mV) vessels. Our findings suggest that inhibition of smooth muscle gap junctions attenuates pressure-induced VSM cell depolarization and myogenic vasoconstriction.  相似文献   

8.
9.
We have identified cells expressing Cx26, Cx30, Cx32, Cx36 and Cx43 in gap junctions of rat central nervous system (CNS) using confocal light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling (FRIL). Confocal microscopy was used to assess general distributions of connexins, whereas the 100-fold higher resolution of FRIL allowed co-localization of several different connexins within individual ultrastructurally-defined gap junction plaques in ultrastructurally and immunologically identified cell types. In >4000 labeled gap junctions found in >370 FRIL replicas of gray matter in adult rats, Cx26, Cx30 and Cx43 were found only in astrocyte gap junctions; Cx32 was only in oligodendrocytes, and Cx36 was only in neurons. Moreover, Cx26, Cx30 and Cx43 were co-localized in most astrocyte gap junctions. Oligodendrocytes shared intercellular gap junctions only with astrocytes, and these heterologous junctions had Cx32 on the oligodendrocyte side and Cx26, Cx30 and Cx43 on the astrocyte side. In 4 and 18 day postnatal rat spinal cord, neuronal gap junctions contained Cx36, whereas Cx26 was present in leptomenigeal gap junctions. Thus, in adult rat CNS, neurons and glia express different connexins, with "permissive" connexin pairing combinations apparently defining separate pathways for neuronal vs. glial gap junctional communication.  相似文献   

10.
《FEBS letters》2014,588(8):1439-1445
The precise expression and timely delivery of connexin 43 (Cx43) proteins to form gap junctions are essential for electrical coupling of cardiomyocytes. Growing evidence supports a cytoskeletal-based trafficking paradigm for Cx43 delivery directly to adherens junctions at the intercalated disc. A limitation of Cx43 localization assays in cultured cells, in which cell–cell contacts are essential, is the inability to control for cell geometry or reproducibly generate contact points. Here we present a micropatterned cell pairing system well suited for live microscopy to examine how the microtubule and actin cytoskeleton confer specificity to Cx43 trafficking to precisely defined cell–cell junctions. This system can be adapted for other cell types and used to study dynamic intracellular movements of other proteins important for cell–cell communication.  相似文献   

11.
Recently we found that electrophysiological (EP) heterogeneities between subepicardial and midmyocardial cells can form a substrate for reentrant ventricular arrhythmias. However, cell-to-cell coupling through gap junctions is expected to attenuate transmural heterogeneities between cell types spanning the ventricular wall. Because connexin43 (Cx43) is the principal ventricular gap junction protein, we hypothesized that transmural EP heterogeneities are in part produced by heterogeneous Cx43 expression across the ventricular wall. The left ventricles of eight dogs were sectioned to expose the transmural surface. To determine whether heterogeneous Cx43 expression influenced EP function, high-resolution transmural optical mapping of the arterially perfused canine wedge preparation was used to measure transmural conduction velocity (thetaTM), dV/dt(max), transmural space constant (lambdaTM), and transmural gradients of action potential duration (APD). Relative Cx43 expression, quantified by confocal immunofluorescence, was significantly lower (by 24 +/- 17%; P < 0.05) in subepicardial compared with deeper layers. Importantly, reduced subepicardial Cx43 was associated with transmural heterogeneities of EP function evidenced by selectively reduced subepicardial thetaTM (by 18 +/- 9%; P < 0.05) compared with deeper layers. In subepicardial regions, dV/dt(max) was fastest (by 19 +/- 15%) and lambdaTM was smallest (by 18.1 +/- 2%), which suggests that conduction slowing was attributable to localized uncoupling rather than reduced excitability. The maximum transmural APD gradients occurred in the same regions where Cx43 expression was lowest; this suggests that Cx43 expression patterns served to maintain APD gradients across the transmural wall. These data demonstrate that heterogeneous Cx43 expression is closely associated with functionally significant EP heterogeneities across the transmural wall. Therefore, Cx43 expression patterns can potentially contribute to arrhythmic substrates that are dependent on transmural electrophysiological heterogeneities.  相似文献   

12.
We have identified cells expressing Cx26, Cx30, Cx32, Cx36 and Cx43 in gap junctions of rat central nervous system (CNS) using confocal light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling (FRIL). Confocal microscopy was used to assess general distributions of connexins, whereas the 100-fold higher resolution of FRIL allowed co-localization of several different connexins within individual ultrastructurally-defined gap junction plaques in ultrastructurally and immunologically identified cell types. In >4000 labeled gap junctions found in >370 FRIL replicas of gray matter in adult rats, Cx26, Cx30 and Cx43 were found only in astrocyte gap junctions; Cx32 was only in oligodendrocytes, and Cx36 was only in neurons. Moreover, Cx26, Cx30 and Cx43 were co-localized in most astrocyte gap junctions. Oligodendrocytes shared intercellular gap junctions only with astrocytes, and these heterologous junctions had Cx32 on the oligodendrocyte side and Cx26, Cx30 and Cx43 on the astrocyte side. In 4 and 18 day postnatal rat spinal cord, neuronal gap junctions contained Cx36, whereas Cx26 was present in leptomenigeal gap junctions. Thus, in adult rat CNS, neurons and glia express different connexins, with “permissive” connexin pairing combinations apparently defining separate pathways for neuronal vs. glial gap junctional communication.  相似文献   

13.
We examined the endothelial gap junctions in diabetic hyperlipidemic mice. Male apolipoprotein E (apoE)-deficient mice were made diabetic by streptozotocin. Three weeks later, the animals were treated with simvastatin for 2 weeks. The expression of aortic gap junctions in the non-diabetic (n=10), untreated diabetic (n=10), and simvastatin-treated diabetic animals (n=6) was analyzed. There was a >4-fold increase in serum cholesterol level and >50% increase in plaque areas in the diabetic mice, regardless of simvastatin treatment. Western blotting of aortae showed reduced expression of connexin37 (Cx37) and Cx40 in the diabetic mice, which were further decreased in the simvastatin-treated diabetic mice. Immunoconfocal microscopy showed that endothelial gap junctions made of Cx37 and Cx40 were both reduced in the untreated diabetic mice compared with the non-diabetic mice (decrease: Cx37, 41%; Cx40, 42%; both p<0.01). The reduction was greater in the simvastatin-treated mice (decrease in treated diabetic vs non-diabetic: Cx37, 61%; Cx40, 79%; both p<0.01; decrease in treated diabetic vs untreated diabetic: Cx37, 34%; Cx40, 63%; both p<0.01). Cx37 and Cx40 were decreased in the endothelium of plaque surface. Cx43 appeared in the medial layer and inner layer of the intima. All three connexins were rarely expressed in monocytes/macrophages inside the plaques. In conclusion, in apoE-deficient mice, streptozotocin-induced diabetes is associated with downregulation of endothelial Cx37 and Cx40 gap junctions. Short-term treatment with simvastatin exacerbates the downregulation.  相似文献   

14.
The composition of the extracellular matrix changes during dermal repair. Initially, hyaluronan (HA) concentration is high, however, by day 3, HA is eliminated. HA optimizes collagen organization within granulation tissue. One possible mechanism of HA modulation of collagen packing is through the promotion of gap junction intercellular communication (GJIC). Gap junctions are gated channels that allow rapid intercellular communication and synchronization of coupled cell activities. The gap junction channel is composed of connexin (Cx) proteins that form a gated channel between coupled cells. HA is reported to enhance Cx43 expression in transformed fibroblasts. GJIC was quantified by the scrape loading technique and reported as a coupling index. The coupling index for human dermal fibroblasts was 4.6 +/- 0.2, while the coupling index for fibroblasts treated with HA more than doubled to 10.6 +/- 0.7. By Western blot analysis no differences were appreciated in the protein levels of Cx43 or beta-catenin, a protein involved in the translocation of Cx to the cell surface. By immuno-histology Cx43 and beta-catenin were evenly distributed throughout the cell in controls, but in cells treated with HA these proteins were co-localized to the cell surface. Coupled fibroblasts are reported to enhance the organization of collagen fibrils. It is proposed that HA increases the accumulation of Cx43 and beta-catenin on the cell surface, leading to greater GJIC and enhanced collagen organization.  相似文献   

15.
Trafficking pathways underlying the assembly of connexins into gap junctions were examined using living COS-7 cells expressing a range of connexin-aequorin (Cx-Aeq) chimeras. By measuring the chemiluminescence of the aequorin fusion partner, the translocation of oligomerized connexins from intracellular stores to the plasma membrane was shown to occur at different rates that depended on the connexin isoform. Treatment of COS-7 cells expressing Cx32-Aeq and Cx43-Aeq with brefeldin A inhibited the movement of these chimera to the plasma membrane by 84 +/- 4 and 88 +/- 4%, respectively. Nocodazole treatment of the cells expressing Cx32-Aeq and Cx43-Aeq produced 29 +/- 16 and 4 +/- 7% inhibition, respectively. In contrast, the transport of Cx26 to the plasma membrane, studied using a construct (Cx26/43T-Aeq) in which the short cytoplasmic carboxyl-terminal tail of Cx26 was replaced with the extended carboxyl terminus of Cx43, was inhibited 89 +/- 5% by nocodazole and was minimally affected by exposure of cells to brefeldin A (17 +/-11%). The transfer of Lucifer yellow across gap junctions between cells expressing wild-type Cx32, Cx43, and the corresponding Cx32-Aeq and Cx43-Aeq chimeras was reduced by nocodazole treatment and abolished by brefeldin A treatment. However, the extent of dye coupling between cells expressing wild-type Cx26 or the Cx26/43T-Aeq chimeras was not significantly affected by brefeldin A treatment, but after nocodazole treatment, transfer of dye to neighboring cells was greatly reduced. These contrasting effects of brefeldin A and nocodazole on the trafficking properties and intercellular dye transfer are interpreted to suggest that two pathways contribute to the routing of connexins to the gap junction.  相似文献   

16.
Connexins are known to play an essential role in the ischemic preconditioning (IP) of the heart; their functional role in this process, however, has not been clearly defined. For this reason, anesthetized rats were subjected to regional myocardial ischemia, with or without IP or reperfusion. In frozen sections of hearts, fluorescence immunohistochemical staining for connexin43 (Cx43) was performed. In contrast to undisturbed zones, tissue that had been subjected to ischemia revealed Cx43 immunostaining not only in the gap junctions but also in a conspicuous pattern in the free cellular membranes of the myocytes. In myocardium that was exposed to IP only, the ratio of immunofluorescence intensity in the free cellular membrane to that in the interior of the cell was 1.22 +/- 0.04 (ratio in non-ischemia-exposed area = 1.04 +/- 0.01). When 15 or 45 min of permanent ischemia followed IP, the effect became more evident (ratio = 1.31 +/- 0.03 and 1.46 +/- 0.03, respectively) and proved to be significantly greater than in the corresponding non-IP groups (ratio = 1.16 +/- 0.03 and 1.30 +/- 0.03, respectively, P < 0.01). Reperfusion led to an overall weakening of fluorescence intensities and a disappearance of the observed IP-specific differences. We conclude that IP initiates a redistribution of Cx43 from its natural position in the gap junctions toward the free plasma membrane, thereby improving the cell's chance of survival during the subsequent phase of prolonged ischemia by an unknown, supposedly gap junction-independent, mechanism.  相似文献   

17.
This study examined whether triiodo-L-thyronine (T3) affects the expression of the major intercellular channel protein, connexin-43, and contractile protein alpha-sarcomeric actin. Cultured cardiomyocytes from newborn rats were treated on day three in culture with 10 or 100 nM T3 and examined 48 and 72 h thereafter. Treated and untreated cells were examined by immunofluorescence and electron microscopy. Expression levels of Cx43 and sarcomeric alpha-actin were monitored by Western blot analysis. Immunofluorescence labeling showed cell membrane location of Cx43 in punctuate gap junctions, whereby fluorescence signal area was significantly higher in cultured cardiomyocytes exposed to T3. This correlated with electron microscopical findings showing increased numbers and size of gap junction profiles, as well as with a significant dose-dependent increase of Cx43 expression detected by Western blot. Immunofluorescence of sarcomeric a-actin was enhanced and its expression increased dose- and time-dependently in T3-treated cultured heart myocytes. However, exposure to the higher dosage (100 nM) of T3 caused mild disintegration of sarcomeric a-actin in some myocytes, suggesting an over-dosage. The results indicate that T3 up-regulates Cx43 and accelerates gap junction formation in cultured neonatal cardiomyocytes. They suggest that thyroid status cannot only modulate the mechanical function of cardiomyocytes but also cell-to-cell communication essential for myocardial electrical and metabolic synchronizations.  相似文献   

18.
Identification of the calmodulin binding domain of connexin 43   总被引:2,自引:0,他引:2  
Calmodulin (CaM) has been implicated in mediating the Ca(2+)-dependent regulation of gap junctions. This report identifies a CaM-binding motif comprising residues 136-158 in the intracellular loop of Cx43. A 23-mer peptide encompassing this CaM-binding motif was shown to bind Ca(2+)-CaM with 1:1 stoichiometry by using various biophysical approaches, including surface plasmon resonance, circular dichroism, fluorescence spectroscopy, and NMR. Far UV circular dichroism studies indicated that the Cx43-derived peptide increased its alpha-helical contents on CaM binding. Fluorescence and NMR studies revealed conformational changes of both the peptide and CaM following formation of the CaM-peptide complex. The apparent dissociation constant of the peptide binding to CaM in physiologic K(+) is in the range of 0.7-1 microM. Upon binding of the peptide to CaM, the apparent K(d) of Ca(2+) for CaM decreased from 2.9 +/- 0.1 to 1.6 +/- 0.1 microM, and the Hill coefficient n(H) increased from 2.1 +/- 0.1 to 3.3 +/- 0.5. Transient expression in HeLa cells of two different mutant Cx43-EYFP constructs without the putative Cx43 CaM-binding site eliminated the Ca(2+)-dependent inhibition of Cx43 gap junction permeability, confirming that residues 136-158 in the intracellular loop of Cx43 contain the CaM-binding site that mediates the Ca(2+)-dependent regulation of Cx43 gap junctions. Our results provide the first direct evidence that CaM binds to a specific region of the ubiquitous gap junction protein Cx43 in a Ca(2+)-dependent manner, providing a molecular basis for the well characterized Ca(2+)-dependent inhibition of Cx43-containing gap junctions.  相似文献   

19.
Cytoskeletal elements may be important in connexin transport to the cell surface, cell surface gap junction plaque formation and/or gap junction internalization. In this study, fluorescence recovery after photobleaching was used to examine the role of microfilaments and microtubules in the recruitment and coalescence of green fluorescent protein-tagged Cx43 (Cx43-GFP) or yellow fluorescent tagged-Cx26 (Cx26-YFP) into gap junctions in NRK cells. In untreated cells, both Cx26-YFP and Cx43-GFP were recruited into gap junctions within photobleached areas of cell-cell contact within 2 hrs. However, disruption of microfilaments with cytochalasin B inhibited the recruitment and assembly of both Cx26-YFP and Cx43-GFP into gap junctions within photobleached areas. Surprisingly, disruption of microtubules with nocodazole inhibited the recruitment of Cx43-GFP into gap junctions but had limited effect on the transport and clustering of Cx26-YFP into gap junctions within the photobleached regions of cell-cell contact. These results suggest that the recruitment of Cx43-GFP and Cx26-YFP to the cell surface or their lateral clustering into gap junctions plaques is dependent in part on the presence of intact actin microfilaments while Cx43-GFP was more dependent on intact microtubules than Cx26-YFP.  相似文献   

20.
In human testis, gap junctions containing connexin(Cx)43 are located within the seminiferous epithelium between Sertoli cells and between Sertoli and germ cells. Cx43 is known to play a role in the differentiation and proliferation of these cell types. It can further be associated with human seminoma development. The dog has been proposed as a model for studies of the male reproductive system, because of the frequent occurrence of testicular neoplasms. Thus, we investigated Cx43-mRNA and -protein expression in testes of normal prepubertal dogs, adult dogs, and in canine testicular tumors. Sertoli cells in prepubertal cords express Cx43 mRNA, but do synthesize only less Cx43 protein. Within the seminiferous tubules, Cx43 mRNA was detected in Sertoli cells, spermatogonia, and spermatocytes. Cx43 protein was mainly present in the basal compartment. In canine testicular tumors Cx43 mRNA was detectable in both seminoma and neoplastic Sertoli cells, whereas Cx43 protein was only found in neoplastic Sertoli cells. Our data indicate that Cx43 is regulated differentially in testicular tumors and that alterations of Cx43 expression may be involved in the pathogenesis of canine testicular malignancies. This study represents the first morphological work on the spatiotemporal expression pattern of Cx43 in normal and neoplastic canine testis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号