首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tetraketones: a new class of tyrosinase inhibitors   总被引:1,自引:0,他引:1  
Twenty-eight tetraketones (1-28) with variable substituents at C-7 were synthesized and evaluated as tyrosinase inhibitors. Remarkably compounds 25 (IC(50)=2.06 microM), 11 (IC(50)=2.09 microM), 15 (IC(50)=2.61 microM), and 27 (IC(50)=3.19 microM) were found to be the most active compounds of the series, even better than both standards kojic acid (IC(50)=16.67 microM) and L-mimosine (IC(50)=3.68 microM). This study may lead to the discovery of therapeutically potent agents against clinically very important dermatological disorders including hyperpigmentation as well as skin melanoma.  相似文献   

2.
Plasmodium falciparum thioredoxin reductase (PfTrxR: NADPH+Trx(S)2+H+<-->NADP++Trx(SH)2) is a high Mr flavin-dependent TrxR that reduces thioredoxin (Trx) via a CysXXXXCys pair located penultimately to the C-terminal Gly. In this respect, PfTrxR differs significantly from its human counterpart which bears a Cys-Sec redox pair at the same position. PfTrxR is essentially involved in antioxidant defense and redox regulation of the parasite and has been previously validated by knock-out studies as a potential drug target for malaria chemotherapy. Moreover, human TrxR is present in most cancer cells at levels tenfold higher than in normal cells. Here we report the discovery of a series of potent inhibitors of PfTrxR. The three most promising inhibitors, 3(IC50(PfTrxR)=2 microM and IC50(hTrxR)=50 microM), 7(IC50(PfTrxR)=2 microM and IC50(hTrxR)=140 microM), and 11(IC50(PfTrxR)=0.5 microM and IC50(hTrxR)=4 microM) were selective for the parasite enzyme. Detailed mechanistic characterization of the effects of these compounds on the PfTrxR-catalyzed reaction showed clear uncompetitive inhibition with respect to both substrate and cofactor. For the most specific PfTrxR inhibitor 7, an alkylation mechanism study based on a thiol conjugation model was performed. Furthermore, all three compounds were active in the lower micromolar range on the chloroquine-resistant P. falciparum strain K1 in vitro.  相似文献   

3.
Cantharidin and its analogues have been of considerable interest as potent inhibitors of the serine/threonine protein phosphatases 1 and 2A (PP1 and PP2A). However, limited modifications to the parent compounds is tolerated. As part of an on-going study we have developed a new series of cantharidin analogues, the cantharimides. Inhibition studies indicate that cantharimides possessing a D- or L-histidine, are more potent inhibitors of PP1 and PP2A (PP1 IC(50)=3.22+/-0.7 microM; PP2A IC(50)=0.81+/-0.1 microM and PP1 IC(50)=2.82+/-0.6 microM; PP2A IC(50)=1.35+/-0.3 microM, respectively) than norcantharidin (PP1 IC(50)=5.31+/-0.76 microM; PP2A IC(50)=2.9+/-1.04 microM) and essentially equipotent with cantharidin (PP1 IC(50)=3.6+/-0.42 microM; PP2A IC(50)=0.36+/-0.08 microM). Cantharimides with non-polar or acidic amino acid residues are only poor inhibitors of PP1 and PP2A.  相似文献   

4.
Pyridine and benzene bioisosteres of amiloride were synthesized and evaluated for their inhibitory potency against the sodium-hydrogen exchanger (NHE) involved in intracellular pH regulation. The inhibition of NHE was determined by using the platelet swelling assay (PSA) in which the swelling of human platelets was induced by their incubation in an acid buffer (pH 6.7). Additionally, the inhibitory potency of the most active compounds was assessed by measuring the inhibition of the EIPA-sensitive (22)Na(+) uptake (UIA) by human platelets after intracellular acidosis. The results indicated that several benzene derivatives and compounds bearing an carbonylguanidine moiety in the meta position of the pyridine nitrogen were much more potent than amiloride (PSA:IC(50)=43.5 microM; UIA:IC(50)=100.1 microM), but less than EIPA, a pyrazine NHE inhibitor (PSA:IC(50)=0.08 microM; UIA:IC(50)=0.5 microM). In both biological assays (2-amino-5-bromo-pyridine-3-carbonyl)guanidine (32) was the most active molecule (PSA: IC(50)=0.8 microM, UIA : IC(50)=0.8 microM). Our investigations demonstrated that the replacement of the pyrazine ring of amiloride by a pyridine or a phenyl ring improved the NHE inhibitory potency (phenyl >pyridine >pyrazine).  相似文献   

5.
Three tyrosyl gallate derivatives (1-3) with variable hydroxyl substituent at the aromatic ring of tyrosol were synthesized and evaluated as potent inhibitors on tyrosinase activity and melanin formation in melan-a cells. Among three tyrosyl gallate derivatives, 4-hydroxyphenethyl 3,4,5-trihydroxybenote (1) (IC(50)=4.93 microM), 3-hydroxyphenethyl 3,4,5-trihydroxybenote (2) (IC(50)=15.21 microM), and 2-hydroxyphenethyl 3,4,5-trihydroxybenote (3) (IC(50)=14.50 microM) exhibited significant inhibitory effect on tyrosinase activity. Compound 1 was the most active compound, though it did not show the inhibitory effect on melanin formation in melan-a cells. However, compounds 2 (IC(50)=8.94 microM) and 3 (IC(50)=13.67 microM) significantly suppressed the cellular melanin formation without cytotoxicity. This study shows that the position of hydroxyl substituent at the aromatic ring of tyrosol plays an important role in the intracellular regulation of melanin formation in cell-based assay system.  相似文献   

6.
Several 1,8-naphthyridine-3-carboxamide derivatives (8-23) were synthesized and tested for in vitro cytotoxicity against eight cancer cell lines and a normal cell line. Compound 12 exhibited high cytotoxicity (IC(50)=1.37microM) in HBL-100 (breast) cell line while compounds 17 (IC(50)=3.7microM) and 22 (IC(50)=3.0microM) have shown high cytotoxicity in KB (oral) and SW-620 (colon) cell lines, respectively. The synthesized 1,8-naphthyridine-3-carboxamides were also evaluated for anti-inflammatory and myeloprotective activities, indicated by modulation in cytokine and chemokine levels secreted by dendritic cells.  相似文献   

7.
A series of hydrophobic p-aminosalicylic acid derivatives containing a lipophilic side chain at C-2 and an amino or guanidine at C-5 were synthesized and evaluated for their ability to inhibit neuraminidase (NA) of influenza A virus (H3N2). All compounds were synthesized in good yields starting from commercially available p-aminosalicylic acid (PAS) using a suitable synthetic strategy. These compounds showed potent inhibitory activity against influenza A NA. Within this series, six compounds, 11, 12, 13e, 16e, 17c, and 18e, have the good potency (IC(50)=0.032-0.049 microM), which are compared to Oseltamivir (IC(50)=0.021 microM) and could be used as lead compounds in the future.  相似文献   

8.
N-Acetyl-2-carboxybenzenesulfonamide (11), and a group of analogues possessing an appropriately substituted-phenyl substituent (4-F, 2,4-F(2), 4-SO(2)Me, 4-OCHMe(2)) attached to its C-4, or C-5 position, were synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. In vitro COX-1/COX-2 inhibition studies showed that 11 is a more potent inhibitor (COX-1 IC(50)=0.06microM; COX-2 IC(50)=0.25microM) than aspirin (COX-1 IC(50)=0.35microM; COX-2 IC(50)=2.4microM), and like aspirin [COX-2 selectivity index (S.I.)=0.14], 11 is a nonselective COX-2 inhibitor (COX-2 S.I.=0.23). Regioisomers having a 2,4-difluorophenyl substituent attached to the C-4 (COX-2 IC(50)=0.087microM; COX-2 S.I. >1149), or C-5 (COX-2 IC(50)=0.77microM, SI>130), position of 11 exhibited the most potent and selective COX-2 inhibitory activity relative to the reference drug celecoxib (COX-1 IC(50)=33.1microM; COX-2 IC(50)=0.07microM; COX-2 S.I.=472). N-Acetyl-2-carboxybenzenesulfonamide (11, ED(50)=49 mg/kg), and its C-4 2,4-difluorophenyl derivative (ED(50)=91 mg/kg), exhibited superior antiinflammatory activity (oral dosing) in a carrageenan-induced rat paw edema assay compared to aspirin (ED(50)=129 mg/kg). These latter compounds exhibited comparable analgesic activity to the reference drug diflunisal, and superior analgesic activity compared to aspirin, in a 4% NaCl-induced abdominal constriction assay. A molecular modeling (docking) study indicated that the SO(2)NHCOCH(3) substituent present in N-acetyl-2-carboxy-4-(2,4-fluorophenyl)benzenesulfonamide, like the acetoxy substituent in aspirin, is suitably positioned to acetylate the Ser(530) hydroxyl group in the COX-2 primary binding site. The results of this study indicate that the SO(2)NHCOCH(3) pharmacophore present in N-acetyl-2-carboxybenzenesulfonamides is a suitable bioisostere for the acetoxy (OCOMe) group in aspirin.  相似文献   

9.
A hitherto unknown class of celecoxib analogs was designed for evaluation as dual inhibitors of the 5-lipoxygenase/cyclooxygenase-2 (5-LOX/COX-2) enzymes. These compounds possess a SO(2)Me (11a), or SO(2)NH(2) (11b) COX-2 pharmacophore at the para-position of the N(1)-phenyl ring in conjunction with a 5-LOX N-hydroxypyrid-2(1H)one iron-chelating moiety in place of the celecoxib C-5 tolyl group. The title compounds 11a-b are weak inhibitors of the COX-1 and COX-2 isozymes (IC(50)=7.5-13.2 microM range). In contrast, the SO(2)Me (11a, IC(50)=0.35 microM), and SO(2)NH(2) (11b, IC(50)=4.9 microM), compounds are potent inhibitors of the 5-LOX enzyme comparing favorably with the reference drug caffeic acid (5-LOX IC(50)=3.47 microM). The SO(2)Me (11a, ED(50)=66.9 mg/kg po), and SO(2)NH(2) (11b, ED(50)=99.8 mg/kg po) compounds exhibited excellent oral anti-inflammatory (AI) activities being more potent than the non-selective COX-1/COX-2 inhibitor drug aspirin (ED(50)=128.9 mg/kg po) and less potent than the selective COX-2 inhibitor celecoxib (ED(50)=10.8 mg/kg po). The N-hydroxypyridin-2(1H)one moiety constitutes a novel pharmacophore for the design of cyclic hydroxamic mimetics capable of chelating 5-LOX iron for exploitation in the design of 5-LOX inhibitory AI drugs.  相似文献   

10.
The synthesis of a novel series of aminostyrylbenzofuran derivatives 1a-w and their inhibitory activities for Abeta fibril formation were described. All the synthesized compounds were evaluated by thioflavin T (ThT) assay and displayed potent inhibitory activities for Abeta fibril formation. Among them, compounds 1i and 1q exhibited excellent inhibitory activities (IC(50)=0.07 and 0.08 microM, respectively) than those of Curcumin (IC(50)=0.80 microM) and IMSB (IC(50)=8.00 microM) as reference compounds. Both compounds were selected as promising candidates for further biological evaluation.  相似文献   

11.
Mast cell derived leukotrienes (LT's) play a vital role in pathophysiology of allergy and asthma. We synthesized various analogues of indolyl, naphthyl and phenylethyl substituted halopyridyl, thiazolyl and benzothiazolyl thioureas and examined their in vitro effects on the high affinity IgE receptor/FcERI-mediated mast cell leukotriene release. Of the 22 naphthylethyl thiourea compounds tested, there were seven active compounds and N-[1-(1-naphthyl)ethyl]-N'-[2-(ethyl-4-acetylthiazolyl)]thiourea (17 and 16) (IC(50)=0.002 microM) and N-[1-(1R)-naphthylethyl]-N'-[2-(5-methylpyridyl)]thiourea (5) (IC(50)=0.005 microM) were identified as the lead compounds. Among the 11 indolylethyl thiourea compounds tested, there were seven active compounds and the halopyridyl compounds N-[2-(3-indolylethyl)]-N'-[2-(5-chloropyridyl)]thiourea and N-[2-(3-indolylethyl)]-N'-[2-(5-bromopyridyl)]thiourea were the most active agents and inhibited the LTC(4) release with low micromolar IC(50) values of 4.9 microM and 6.1 microM, respectively. The hydroxylphenyl substituted compounds N-[2-(4-hydroxyphenyl)ethyl]-N'-[2-(5-chloropyridyl)]thiourea (IC(50)=12.6 microM), N-[2-(4-hydroxyphenyl)ethyl]-N'-[2-(5-bromopyridyl)]thiourea (IC(50)=16.8 microM) and N-[2-(4-hydroxyphenyl)ethyl]-N'-[2-(pyridyl)]thiourea (IC(50)=8.5 microM) were the most active pyridyl thiourea agents. Notably, the introduction of electron withdrawing or donating groups had a marked impact on the biological activity of these thiourea derivatives and the Hammett sigma values of their substituents were identified as predictors of their potency. In contrast, experimentally determined partition coefficient values did not correlate with the biological activity of the thiourea compounds which demonstrates that their liphophilicity is not an important factor controlling their mast cell inhibitory effects.  相似文献   

12.
Fourteen modified norcantharidin analogues have been synthesised and screened for their ability to inhibit the serine/threonine protein phosphatases 1 and 2A. The most potent compounds found were 10 (PP1 IC(50)=13+/-5 microM; PP2A IC(50)=7+/-3 microM) and 16 (PP1 IC(50)=18+/-8 microM; PP2A IC(50)=3.2+/-0.4 microM). Overall, only analogues possessing at least one acidic residue at the former anhydride warhead displayed any PP1 or PP2A inhibitory action. The ability of these analogues to inhibit PP1 and PP2A correlates well with their observed anti-cancer activity against a panel of five cancer cell lines: A2780 (human ovarian carcinoma), G401 (human kidney carcinoma), HT29 (human colorectal carcinoma), H460 (human lung carcinoma) and L1210 (murine leukemia).  相似文献   

13.
The cytochrome P450 enzyme, 17alpha-hydroxylase/17,20-lyase (P450(17alpha)), is a potential target in hormone-dependent cancers. We report the synthesis, biochemical evaluation and rationalisation of the inhibitory activity of a number of azole-based compounds as inhibitors of the two components of P450(17alpha), i.e., 17alpha-hydroxylase (17alpha-OHase) and 17,20-lyase (lyase). The results suggest that the imidazole-based compounds are highly potent inhibitors of both components, with N-7-phenyl heptyl imidazole (21) (IC(50)=0.32 microM against 17alpha-OHase and IC(50)=0.10 microM against lyase) and N-8-phenyl octyl imidazole (23) (IC(50)=0.25 microM against 17alpha-OHase and IC(50)=0.21 microM against lyase) being the two most potent compounds within the current study, in comparison to ketoconazole (KTZ) (IC(50)=3.76 microM against 17alpha-OHase and IC(50)=1.66 microM against lyase). Furthermore, consideration of the inhibitory activity against the two components show that the compounds tested are less potent towards the 17alpha-OHase component, a desirable property in the development of novel inhibitors of P450(17alpha). Structure-activity relationship determination of the range of compounds synthesised suggests that logP (log of the partition coefficient) is a key physicochemical factor in determining the overall inhibitory activity. In an effort to determine the viability of these compounds becoming potential drug candidates as well as to show specificity of these compounds, we undertook the biochemical evaluation of the synthesised compounds against two isozymes of 17beta-hydroxysteroid dehydrogenase [namely type 1 (17beta-HSD1) and type 3 (17beta-HSD3)] and 3beta-hydroxysteroid dehydrogenase (3beta-HSD). Consideration of the inhibitory activity possessed by the compounds considered within the current study against 3beta-HSD, 17beta-HSD1 and 17beta-HSD3 shows that there is no clear structure-activity relationship and that the compounds appear to possess similar inhibitory activity against both 3beta-HSD and 17beta-HSD3 whilst against 17beta-HSD1, the compounds appear to possess poor inhibitory activity at [I]=100 microM. Indeed, two of the most potent inhibitors of P450(17alpha), (compounds 21 and 23), were found to possess relatively good levels of inhibition against the three enzymes-compound 21 was found to possess approximately 32%, approximately 21% and approximately 37% inhibition whilst compound 23 was found to possess approximately 38%, approximately 30% and approximately 28% inhibition against 3beta-HSD, 17beta-HSD1 and 17beta-HSD3 respectively. We therefore concluded that the azole-based compounds synthesised within the current study are not suitable for further consideration as potential drug candidates due to their lack of specificity.  相似文献   

14.
A series of 12 organic arsonic acid compounds has been synthesized and evaluated against human B-lineage (NALM-6) and T-lineage (MOLT-3) acute lymphoblastic leukemia (ALL) cell lines. The lead compounds 2-trichloromethyl-4-[4'-(4"-phenylazo)phenylarsonic acid]aminoquinazoline (compound 19, PHI-P518; IC(50)=1.1+/-0.5 microM against NALM-6 and 2.0+/-0.8 microM against MOLT-3) and 2-methylthio-4-(2'-phenylarsonic acid)aminopyrimidine (compound 15, PHI-P381; IC(50)=1.5+/-0.3 microM against NALM-6 and 2.3+/-0.5 microM against MOLT-3) exhibited potent antileukemic activity at low micromolar concentrations.  相似文献   

15.
Simple modifications to the anhydride moiety of norcantharidin have lead to the development of a series of analogues displaying modest PP1 inhibition (low muM IC(50)s) comparable to that of norcantharidin (PP1 IC(50)=10.3+/-1.37 microM). However, unlike norcantharidin, which is a potent inhibitor of PP2A (IC(50)=2.69+/-1.37 microM), these analogues show reduced PP2A inhibitory action resulting in the development of selective PP1 inhibitory compounds. Data indicates that the introduction of two ortho-disposed substituents on an aromatic ring, or para-substituent favours PP1 inhibition over PP2A inhibition. Introduction of a p-morphilinoaniline substituent, 35, affords an inhibitor displaying PP1 IC(50)=6.5+/-2.3 microM; and PP2A IC(50)=7.9+/-0.82 microM (PP1/PP2A=0.82); and a 2,4,6-trimethylaniline, 23, displaying PP1 IC(50)=48+/-9; and PP2A IC(5) 85+/-3 microM (PP1/PP2A=0.56). The latter shows a 7-fold improvement in PP1 versus PP2A selectivity when compared with norcantharidin. Subsequent analysis of 23 and 35 as potential PP2B inhibitors revealed modest inhibition with IC(50)s of 89+/-6 and 42+/-3 microM, respectively, and returned with PP1/PP2B selectivities of 0.54 and 0.15. Thus, these analogues are the simplest and most selective PP1 inhibitors retaining potency reported to date.  相似文献   

16.
Norcantharidin (3) is a potent PP1 (IC(50)=9.0+/-1.4 microM) and PP2A (IC(50)=3.0+/-0.4 microM) inhibitor with 3-fold PP2A selectivity and induces growth inhibition (GI(50) approximately 45 microM) across a range of human cancer cell lines including those of colorectal (HT29, SW480), breast (MCF-7), ovarian (A2780), lung (H460), skin (A431), prostate (DU145), neuroblastoma (BE2-C), and glioblastoma (SJ-G2) origin. Until now limited modifications to the parent compound have been tolerated. Surprisingly, simple heterocyclic half-acid norcantharidin analogues are more active than the original lead compound, with the morphilino-substituted (9) being a more potent (IC(50)=2.8+/-0.10 microM) and selective (4.6-fold) PP2A inhibitor with greater in vitro cytotoxicity (GI(50) approximately 9.6 microM) relative to norcantharidin. The analogous thiomorpholine-substituted (10) displays increased PP1 inhibition (IC(50)=3.2+/-0 microM) and reduced PP2A inhibition (IC(50)=5.1+/-0.41 microM), to norcantharidin. Synthesis of the analogous cantharidin analogue (19) with incorporation of the amine nitrogen into the heterocycle further increases PP1 (IC(50)=5.9+/-2.2 microM) and PP2A (IC(50)=0.79+/-0.1 microM) inhibition and cell cytotoxicity (GI(50) approximately 3.3 microM). These analogues represent the most potent cantharidin analogues thus reported.  相似文献   

17.
N-Octyl-beta-valienemine (1), a potent beta-glucocerebrosidase inhibitor, was chemically transformed into two biologically interesting compounds: the 4-epimer, beta-galacto-type N-octyl-valienamine, and the 4-O-(beta-D-galactopyranosyl) derivative, a carba-lactosylceramide analogue. The former, interestingly, could be demonstrated to act as a very effective inhibitor (IC(50)=0.3 microM) of human beta-galactosidase. The latter exhibited moderate inhibitory activity (IC(50)=20 microM) against beta-glucocerebrosidase (mouse liver).  相似文献   

18.
The structure-based elucidation of 2,4,6-tri-substituted phenols for their antioxidative and anti-peroxidative effects has been investigated using TX-1952 (2,6-diprenyl-4-iodophenol), TX-1961, TX-1980, BTBP and BHT. In the inhibition of mitochondrial lipid peroxidation, the inhibitory activity of 2,6-di-tert-butyl-4-bromophenol (BTBP) (IC(50)=0.17 microM) was twice as high as that of 2,6-di-tert-butyl-4-methylphenol (BHT) (IC(50)=0.31 microM). This result shows that the 4-halogen group increases inhibitory activity for mitochondrial lipid peroxidation. Besides, TX-1952 (IC(50)=0.60 microM) was the highest inhibitor among 2,6-diprenyl-4-halophenols, followed by TX-1961 (IC(50)=0.93 microM) and TX-1980 (IC(50)=1.2 microM). In 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging experiments, the activity of TX-1952 (IC(0.200)=53.1 microM) was lower than that of BHT (IC(0.200)=33.7 microM) and BTBP (IC(0.200)=16.0 microM), but TX-1952 and BHT showed the same HOMO energy (-8.991 eV). These results suggest that the two prenyl groups at ortho position hinder the phenolic hydrogen abstraction by DPPH radical. These findings demonstrated that TX-1952 was a novel and potent inhibitor for lipid peroxidation.  相似文献   

19.
Bioassay-directed fractionation of an ethyl acetate extract from cultures of the fungus Malbranchea aurantiaca led to the isolation of two phytotoxic compounds, namely, 1-hydroxy-2-oxoeremophil-1(10),7(11),8(9)-trien-12(8)-olide (1) and penicillic acid (2). The structure of 1 was established by spectroscopic and X-ray crystallographic analyses. Metabolites 1 and 2 caused significant inhibition of radicle growth of Amaranthus hypochondriacus with IC(50) values 6.57 and 3.86 microM, respectively. In addition, 1 inhibited activation of the calmodulin-dependent enzyme cAMP phosphodiesterase (IC(50)=10.2 microM).  相似文献   

20.
Mast cell derived leukotrienes (LT's) play a vital role in pathophysiology of allergy and asthma. We synthesized various analogues of indolyl, naphthyl and phenylethyl substituted halopyridyl, thiazolyl and benzothiazolyl thioureas and examined their in vitro effects on the high affinity IgE receptor/Fc epsilon RI-mediated mast cell leukotriene release. Of the 22 naphthylethyl thiourea compounds tested, there were 7 active compounds and N-[1-(1-naphthyl)ethyl]-N'-[2-(ethyl-4-acetylthiazolyl)]thiourea (17 and 16) (IC(50)=0.002 microM) and N-[1-(1R)-naphthylethyl]-N'-[2-(5-methylpyridyl)]thiourea (compound 5) (IC(50)=0.005 microM) were identified as the lead compounds. Among the 11 indolylethyl thiourea compounds tested, there were seven active compounds and the halopyridyl compounds N-[2-(3-indolylethyl)]-N'-[2-(5-chloropyridyl)]thiourea (24) and N-[2-(3-indolylethyl)]-N'-[2-(5-bromopyridyl)]thiourea (25) were the most active agents and inhibited the LTC(4) release with low micromolar IC(50) values of 4.9 and 6.1 microM, respectively. The hydroxylphenyl substituted compounds N-[2-(4-hydroxyphenyl)ethyl]-N'-[2-(5-chloropyridyl)]thiourea (37; IC(50)=12.6 microM), N-[2-(4-hydroxyphenyl)ethyl]-N'-[2-(5-bromopyridyl)]thiourea (50; IC(50)=16.8 microM) and N-[2-(4-hydroxyphenyl)ethyl]-N'-[2-(pyridyl)]thiourea (35; IC(50)=8.5 microM) were the most active pyridyl thiourea agents. Notably, the introduction of electron withdrawing or donating groups had a marked impact on the biological activity of these thiourea derivatives and the Hammett sigma values of their substituents were identified as predictors of their potency. In contrast, experimentally determined partition coefficient values did not correlate with the biological activity of the thiourea compounds which demonstrates that their liphophilicity is not an important factor controlling their mast cell inhibitory effects. These results establish the substituted halopyridyl, indolyl and naphthyl thiourea compounds as a new chemical class of anti-allergic agents inhibiting IgE receptor/Fc epsilon RI-mediated mast cell LTC(4) release. Further lead optimization efforts may provide the basis for new and effective treatment as well as prevention programs for allergic asthma in clinical settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号