首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 931 毫秒
1.
Wendler D  Grady C 《Bioethics》2008,22(4):203-208
To give valid informed consent to participate in clinical research, potential participants should understand the risks, potential benefits, procedures, and alternatives. Potential participants also should understand that they are being invited to participate in research. Yet it is unclear what potential participants need to understand to satisfy this particular requirement. As a result, it is unclear what additional information investigators should disclose about the research; and it is also unclear when failures of understanding in this respect undermine the validity of potential participants' informed consent. An analysis of individuals' interests suggests that potential participants need to understand three additional facts to understand that they are being invited to participate in research: 1) research contribution : those who enroll in the study will be contributing to a project designed to gather generalizable knowledge to benefit others in the future; 2) research relationship : the investigators will rely on participants' efforts to gather the generalizable knowledge to benefit others; and 3) research impact : the extent to which participating in the study will alter what participants do and what happens to them.  相似文献   

2.
Biomedical research relies increasingly on large collections of data sets and knowledge whose generation, representation and analysis often require large collaborative and interdisciplinary efforts. This dimension of 'big data' research calls for the development of computational tools to manage such a vast amount of data, as well as tools that can improve communication and access to information from collaborating researchers and from the wider community. Whenever research projects have a defined temporal scope, an additional issue of data management arises, namely how the knowledge generated within the project can be made available beyond its boundaries and life-time. DC-THERA is a European 'Network of Excellence' (NoE) that spawned a very large collaborative and interdisciplinary research community, focusing on the development of novel immunotherapies derived from fundamental research in dendritic cell immunobiology. In this article we introduce the DC-THERA Directory, which is an information system designed to support knowledge management for this research community and beyond. We present how the use of metadata and Semantic Web technologies can effectively help to organize the knowledge generated by modern collaborative research, how these technologies can enable effective data management solutions during and beyond the project lifecycle, and how resources such as the DC-THERA Directory fit into the larger context of e-science.  相似文献   

3.
Bioinformatics is a central discipline in modern life sciences aimed at describing the complex properties of living organisms starting from large-scale data sets of cellular constituents such as genes and proteins. In order for this wealth of information to provide useful biological knowledge, databases and software tools for data collection, analysis and interpretation need to be developed. In this paper, we review recent advances in the design and implementation of bioinformatics resources devoted to the study of metals in biological systems, a research field traditionally at the heart of bioinorganic chemistry. We show how metalloproteomes can be extracted from genome sequences, how structural properties can be related to function, how databases can be implemented, and how hints on interactions can be obtained from bioinformatics.  相似文献   

4.
We developed a database system for collaborative HIV analysis (DBCollHIV) in Brazil. The main purpose of our DBCollHIV project was to develop an HIV-integrated database system with analytical bioinformatics tools that would support the needs of Brazilian research groups for data storage and sequence analysis. Whenever authorized by the principal investigator, this system also allows the integration of data from different studies and/or the release of the data to the general public. The development of a database that combines sequences associated with clinical/epidemiological data is difficult without the active support of interdisciplinary investigators. A functional database that securely stores data and helps the investigator to manipulate their sequences before publication would be an attractive tool for investigators depositing their data and collaborating with other groups. DBCollHIV allows investigators to manipulate their own datasets, as well as integrating molecular and clinical HIV data, in an innovative fashion.  相似文献   

5.
Scientific research progresses by the dialectic dialogue between hypothesis building and the experimental testing of these hypotheses. Microbiologists as biologists in general can rely on an increasing set of sophisticated experimental methods for hypothesis testing such that many scientists maintain that progress in biology essentially comes with new experimental tools. While this is certainly true, the importance of hypothesis building in science should not be neglected. Some scientists rely on intuition for hypothesis building. However, there is also a large body of philosophical thinking on hypothesis building whose knowledge may be of use to young scientists. The present essay presents a primer into philosophical thoughts on hypothesis building and illustrates it with two hypotheses that played a major role in the history of science (the parallel axiom and the fifth element hypothesis). It continues with philosophical concepts on hypotheses as a calculus that fits observations (Copernicus), the need for plausibility (Descartes and Gilbert) and for explicatory power imposing a strong selection on theories (Darwin, James and Dewey). Galilei introduced and James and Poincaré later justified the reductionist principle in hypothesis building. Waddington stressed the feed-forward aspect of fruitful hypothesis building, while Poincaré called for a dialogue between experiment and hypothesis and distinguished false, true, fruitful and dangerous hypotheses. Theoretical biology plays a much lesser role than theoretical physics because physical thinking strives for unification principle across the universe while biology is confronted with a breathtaking diversity of life forms and its historical development on a single planet. Knowledge of the philosophical foundations on hypothesis building in science might stimulate more hypothesis-driven experimentation that simple observation-oriented “fishing expeditions” in biological research.  相似文献   

6.
Yu GX  Glass EM  Karonis NT  Maltsev N 《Proteins》2005,61(4):907-917
Automated annotation of high-throughput genome sequences is one of the earliest steps toward a comprehensive understanding of the dynamic behavior of living organisms. However, the step is often error-prone because of its underlying algorithms, which rely mainly on a simple similarity analysis, and lack of guidance from biological rules. We present herein a knowledge-based protein annotation algorithm. Our objectives are to reduce errors and to improve annotation confidences. This algorithm consists of two major components: a knowledge system, called "RuleMiner," and a voting procedure. The knowledge system, which includes biological rules and functional profiles for each function, provides a platform for seamless integration of multiple sequence analysis tools and guidance for function annotation. The voting procedure, which relies on the knowledge system, is designed to make (possibly) unbiased judgments in functional assignments among complicated, sometimes conflicting, information. We have applied this algorithm to 10 prokaryotic bacterial genomes and observed a significant improvement in annotation confidences. We also discuss the current limitations of the algorithm and the potential for future improvement.  相似文献   

7.
Research on the visual system focuses on using electrophysiology, pharmacology and other invasive tools in animal models. Non-invasive tools such as scalp electroencephalography and imaging allow examining humans but show a much lower spatial and/or temporal resolution. Under special clinical conditions, it is possible to monitor single-unit activity in humans when invasive procedures are required due to particular pathological conditions including epilepsy and Parkinson's disease. We review our knowledge about the visual system and visual memories in the human brain at the single neuron level. The properties of the human brain seem to be broadly compatible with the knowledge derived from animal models. The possibility of examining high-resolution brain activity in conscious human subjects allows investigators to ask novel questions that are challenging to address in animal models.  相似文献   

8.
The Biomolecular Research Center at Boise State University is a research core facility that supports the study of biomolecules with an emphasis on protein structure and function, molecular interactions, and imaging. The mission of the core is to facilitate access to instrumentation that might otherwise be unavailable because of the cost, training for new users, and scientific staff with specialized skills to support early-stage investigators, as well as more established senior investigators. Data collection and management of users and their research output is essential to understand the impact of the center on the research environment and research productivity. However, challenges are often encountered when trying to fully quantify the impact of a core facility on the institution, as well as on the career success of individual investigators. This challenge can be exacerbated under the conditions of unprecedented growth in biomedical research and shared core facility use that has been experienced at Boise State University, an institution of emerging research excellence. Responding to these challenges required new approaches to information management, reporting, assessment, and evaluation. Our specific data management, evaluation, and assessment challenges included 1) collection and management of annual reporting information from investigators, staff, and students in a streamlined manner that did not lead to reporting fatigue; 2) application of software for analyzing synergy among programs’ management strategy and investigator success; and 3) consolidation of core facility management, billing, and reporting capabilities into 1 cohesive system. The data management tools adopted had a beneficial effect by saving time, reducing administrative burden, and streamlining reporting. Practices implemented for data management have facilitated effective evaluation and future program planning. The substantial burden of assessment requirements necessitates early consideration of a strategy for data management to allow assessment of impact.  相似文献   

9.
Electronic particle counters have gained widespread acceptance as a means to measure osmotic properties of cell membranes. Because most current instruments do not allow for the collection of true volume as a function of time data, investigators use older models such as the MultiSizer II sampling stand. A significant drawback to this and other older models is that they rely on mercury to maintain a constant pressure and to connect electrodes. The presence of mercury is a human health hazard that is exacerbated by the sometimes irregular vacuum pressures that cause mercury spills inside of the machine. To eliminate this hazard, we have determined that the MultiSizer II model can be simply and easily modified to function and collect temporal volume data without the use of mercury.  相似文献   

10.
There is a growing appreciation by the biomedical community that studying the impact of sex and gender on health, aging, and disease will lead to improvements in human health. Sex- and gender-based comparisons can inform research on disease mechanisms and the development of new therapeutics as well as enhance scientific rigor and reproducibility. This review will assist basic researchers, clinical investigators, as well as epidemiologists, population, and social scientists by providing an annotated bibliography of currently available resource tools on how to consider sex and gender as independent variables in research design and methodology. These resources will assist investigators applying for funding from the National Institutes of Health since all grant applicants will be required (as of January 25, 2016) to address the role of sex as a biological variable in vertebrate animal and human studies.  相似文献   

11.
Michele Hanks 《Ethnos》2016,81(2):262-289
In contemporary England, amateur paranormal investigators are actively engaged in attempts to produce objective knowledge about the ghostly and paranormal. Their project requires them to balance subjective, personal encounters with objective, technologically mediated ones. In doing so, they struggle to align their project with dominant understandings of rationality. Drawing on an ethnographic study of knowledge production among paranormal investigators, I explore paranormal investigators' use of humour and argue that they rely on humorous performances to align themselves with a powerful, hegemonic notion of rationality. Through their humour, they do not contest the scope of rationality; rather, they locate themselves as central to it.  相似文献   

12.
SUMMARY: Analysing large amounts of data generated by next-generation sequencing (NGS) technologies is difficult for researchers or clinicians without computational skills. They are often compelled to delegate this task to computer biologists working with command line utilities. The availability of easy-to-use tools will become essential with the generalization of NGS in research and diagnosis. It will enable investigators to handle much more of the analysis. Here, we describe Knime4Bio, a set of custom nodes for the KNIME (The Konstanz Information Miner) interactive graphical workbench, for the interpretation of large biological datasets. We demonstrate that this tool can be utilized to quickly retrieve previously published scientific findings.  相似文献   

13.
The quest to determine the function of a protein can represent a profound challenge. Although this task is the mandate of countless research groups, a general framework for how it can be approached is conspicuously lacking. Moreover, even expectations for when the function of a protein can be considered to be ‘known’ are not well defined. In this review, we begin by introducing concepts pertinent to the challenge of protein function assignments. We then propose a framework for inferring a protein's function from four data categories: ‘inheritance’, ‘distribution’, ‘interactions’ and ‘phenotypes’ (IDIP). We document that the functions of proteins emerge at the intersection of inferences drawn from these data categories and emphasise the benefit of considering them in an evolutionary context. We then apply this approach to the cellular prion protein (PrPC), well known for its central role in prion diseases, whose function continues to be considered elusive by many investigators. We document that available data converge on the conclusion that the function of the prion protein is to control a critical post-translational modification of the neural cell adhesion molecule in the context of epithelial-to-mesenchymal transition and related plasticity programmes. Finally, we argue that this proposed function of PrPC has already passed the test of time and is concordant with the IDIP framework in a way that other functions considered for this protein fail to achieve. We anticipate that the IDIP framework and the concepts analysed herein will aid the investigation of other proteins whose primary functional assignments have thus far been intractable.  相似文献   

14.
Modern biomedical research is evolving with the rapid growth of diverse data types, biophysical characterization methods, computational tools and extensive collaboration among researchers spanning various communities and having complementary backgrounds and expertise. Collaborating researchers are increasingly dependent on shared data and tools made available by other investigators with common interests, thus forming communities that transcend the traditional boundaries of the single research laboratory or institution. Barriers, however, remain to the formation of these virtual communities, usually due to the steep learning curve associated with becoming familiar with new tools, or with the difficulties associated with transferring data between tools. Recognizing the need for shared reference data and analysis tools, we are developing an integrated knowledge environment that supports productive interactions among researchers. Here we report on our current collaborative environment, which focuses on bringing together structural biologists working in the area of mass spectrometric based methods for the analysis of tertiary and quaternary macromolecular structures (MS3D) called the Collaboratory for MS3D (C-MS3D). C-MS3D is a Web-portal designed to provide collaborators with a shared work environment that integrates data storage and management with data analysis tools. Files are stored and archived along with pertinent meta data in such a way as to allow file handling to be tracked (data provenance) and data files to be searched using keywords and modification dates. While at this time the portal is designed around a specific application, the shared work environment is a general approach to building collaborative work groups. The goal of this is to not only provide a common data sharing and archiving system, but also to assist in the building of new collaborations and to spur the development of new tools and technologies.  相似文献   

15.
Relaxations and fluctuations in myoglobin   总被引:1,自引:0,他引:1  
One major goal of biological physics is the discovery and understanding of the concepts and laws that govern biomolecules, in particular proteins. Since there exist at least 10(5) different proteins, the choice of a suitable prototype is necessary. Myoglobin (Mb) has for many years played the role of such a prototype. It appears to be simple enough so that many of its properties can be understood, yet it is complex enough to display many of the fascinating characteristics of biomolecules. One major achievement in the study of any protein would be the establishment of convincing connections among structure, kinetics, energy landscape, dynamics, and function. We believe that this goal has not yet been reached in any protein, but the present knowledge of Mb gives some hope that the end is near in this case. Here, we sketch some of the results that have been obtained in the past 50 or more years in the research on Mb, obtained by an army of investigators.  相似文献   

16.
The Web has become the major medium for various communities to share their knowledge. To this end, it provides an optimal environment for knowledge networks. The web offers global connectivity that is virtually instantaneous, and whose resources and documents can easily be indexed for easy searching. In the coupled realms of biomedical research and healthcare, this has become especially important where today many thousands of communities already exist that connect across academia, hospitals and industry. These communities also rely on several forms of knowledge assets, including publications, experimental data, domain-specific vocabularies and policies. Web-based communities will be one of the earlier beneficiaries of the emerging Semantic Web. With the new standards and technologies of the Semantic Web, effective utilization of knowledge networks will expand profoundly, fostering new levels of innovation and knowledge.  相似文献   

17.
Migrations are characterized by periods of movement that typically rely on orientation towards directional cues. Anadromous fish undergo several different forms of oriented movement during their spawning migration and provide some of the most well‐studied examples of migratory behaviour. During the freshwater phase of the migration, fish locate their spawning grounds via olfactory cues. In this review, we synthesize research that explores the role of olfaction during the spawning migration of anadromous fish, most of which focuses on two families: Salmonidae (salmonids) and Petromyzontidae (lampreys). We draw attention to limitations in this research, and highlight potential areas of investigation that will help fill in current knowledge gaps. We also use the information assembled from our review to formulate a new hypothesis for natal homing in salmonids. Our hypothesis posits that migrating adults rely on three types of cues in a hierarchical fashion: imprinted cues (primary), conspecific cues (secondary), and non‐olfactory environmental cues (tertiary). We provide evidence from previous studies that support this hypothesis. We also discuss future directions of research that can test the hypothesis and further our understanding of the spawning migration.  相似文献   

18.
Physical models, like mathematical models, are useful tools in biomechanical research. Physical models enable investigators to explore parameter space in a way that is not possible using a comparative approach with living organisms: parameters can be varied one at a time to measure the performance consequences of each, while values and combinations not found in nature can be tested. Experiments using physical models in the laboratory or field can circumvent problems posed by uncooperative or endangered organisms. Physical models also permit some aspects of the biomechanical performance of extinct organisms to be measured. Use of properly scaled physical models allows detailed physical measurements to be made for organisms that are too small or fast to be easily studied directly. The process of physical modelling and the advantages and limitations of this approach are illustrated using examples from our research on hydrodynamic forces on sessile organisms, mechanics of hydraulic skeletons, food capture by zooplankton and odour interception by olfactory antennules.  相似文献   

19.
Understanding how organelles interact, exchange materials, assemble, disassemble, and evolve as a function of space, time, and environment is an exciting area at the very forefront of chemical and cell biology. Here, we bring attention to recent progress in the design and application of lipid-based tools to visualize and interrogate organelles in live cells, especially at super resolution. We highlight strategies that rely on modification of natural lipids or lipid-like small molecules ex cellula, where organelle specificity is provided by the structure of the chemically modified lipid, or in cellula using cellular machinery, where an enzyme labels the lipid in situ. We also describe recent improvements to the chemistry upon which lipid probes rely, many of which have already begun to broaden the scope of biological questions that can be addressed by imaging organelle membranes at the nanoscale.  相似文献   

20.
The basic research in cell biology and in medical sciences makes large use of imaging tools mainly based on confocal fluorescence and, more recently, on non-linear excitation microscopy. Substantially the aim is the recognition of selected targets in the image and their tracking in time. We have developed a particle tracking algorithm optimized for low signal/noise images with a minimum set of requirements on the target size and with no a priori knowledge of the type of motion. The image segmentation, based on a combination of size sensitive filters, does not rely on edge detection and is tailored for targets acquired at low resolution as in most of the in-vivo studies. The particle tracking is performed by building, from a stack of Accumulative Difference Images, a single 2D image in which the motion of the whole set of the particles is coded in time by a color level. This algorithm, tested here on solid-lipid nanoparticles diffusing within cells and on lymphocytes diffusing in lymphonodes, appears to be particularly useful for the cellular and the in-vivo microscopy image processing in which few a priori assumption on the type, the extent and the variability of particle motions, can be done.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号