首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The 2 micron plasmid of Saccharomyces cerevisiae codes for a site-specific recombinase, the FLP protein, that catalyzes efficient recombination across two 599-base-pair (bp) inverted repeats of the plasmid DNA both in vivo and in vitro. We analyzed the interaction of the purified FLP protein with the target sequences of two point mutants that exhibit impaired FLP-mediated recombination in vivo. One mutation lies in one of the 13-bp repeat elements that had been previously shown to be protected from DNase digestion by the FLP protein. This mutation dramatically reduces FLP-mediated recombination in vitro and appears to act by reducing the binding of FLP protein to its target sequence. The second mutation lies within the 8-bp core region of the FLP target sequence. The FLP protein introduces staggered nicks surrounding this 8-bp region, and these nicks are thought to define the sites of strand exchange. The mutation in the core region abolishes recombination with a wild-type site. However, recombination between two mutated sites is very efficient. This result suggests that proper base pairing between the two recombining sites is an important feature of FLP-mediated recombination.  相似文献   

2.
The 2-micron plasmid of the yeast Saccharomyces cerevisiae codes for a site-specific recombinase ('FLP') that efficiently catalyses recombination across the plasmid's two 599 bp repeats both in vivo and in vitro. We have used the partially purified FLP protein to define the minimal duplex DNA sequence required for intra- and intermolecular recombination in vitro. Previous DNase footprinting experiments had shown that FLP protected 50 bp of DNA around the recombination site. We made BAL31 deletions and synthetic FLP sites to show that the minimal length of the site that was able to recombine with a wild-type site was 22 bp. The site consists of two 7 bp inverted repeats surrounding an 8 bp core region. We also showed that the deleted sites recombined with themselves and that one of three 13 bp repeated elements within the FLP target sequence was not necessary for efficient recombination in vitro. Mutants lacking this redundant 13 bp element required a lower amount of FLP recombinase to achieve maximal yield of recombination than the wild type site. Finally, we discuss the structure of the FLP site in relation to the proposed function of FLP recombination in copy number amplification of the 2-micron plasmid in vivo.  相似文献   

3.
The 2-micron plasmid of the yeast Saccharomyces cerevisiae encodes a site-specific recombinase (FLP) that promotes inversion across a unique site contained in each of the 599-base-pair inverted repeats of the plasmid. We have studied the topological changes generated in supercoiled substrates after exposure to the purified FLP protein in vitro. When a supercoiled substrate bearing two FLP target sequences in inverse orientation is treated with FLP, the products are multiply knotted structures that arise as a result of random entrapment of interdomainal supercoils. Likewise, a supercoiled substrate bearing two target sequences in direct orientation yields multiply interlocked catenanes as the product. Both types of substrate seem to be able to undergo repeated rounds of recombination that result in products of further complexity. The FLP protein also acts as a site-specific topoisomerase during the recombination reaction.  相似文献   

4.
The FLP recombinase, encoded by the 2 micron plasmid of Saccharomyces cerevisiae, promotes efficient recombination in vivo and in vitro between its specific target sites (FLP sites). It was previously determined that FLP interacts with DNA sequences within its target site (B. J. Andrews, G. A. Proteau, L. G. Beatty, and P. D. Sadowski. Cell 40:795-803, 1985), generates a single-stranded break on both DNA strands within the FLP site, and remains covalently attached to the 3' end of each break. We now show that the FLP protein is bound to the 3' side of each break by an O-phosphotyrosyl residue and that it appears that the same tyrosyl residue(s) is used to attach to either DNA strand within the FLP site.  相似文献   

5.
The minimal substrate for the 2 microns circle site-specific recombinase FLP consists of a nearly perfect 13-base-pair dyad symmetry with an 8-base-pair core. By using a series of chemically synthesized FLP substrates in in vitro FLP recombination and FLP-binding assays, we have identified four positions within each of the symmetry elements that are important contact points for the FLP protein. Furthermore, the binding and recombination data provide evidence for cooperativity between the two symmetry elements of a substrate and between the symmetry elements of two partner substrates during FLP recombination.  相似文献   

6.
Recombination within the yeast plasmid 2mu circle is site-specific   总被引:39,自引:0,他引:39  
J R Broach  V R Guarascio  M Jayaram 《Cell》1982,29(1):227-234
The multicopy yeast plasmid, 2mu circle, encodes a specialized recombination system. It contains two regions, each 599 bp in length, that are precise inverted repeats of each other and between which recombination occurs readily. In addition, this recombination requires the product of a 2mu circle gene, designated FLP. By examining the products of FLP-mediated recombination of plasmids containing single insertions within one of the repeated regions, we show that this recombination occurs only at a specific site within the repeat. This result was confirmed from analysis of the ability of plasmids containing various deletions within one of the repeated regions to serve as substrates for FLP-mediated recombination. These experiments limit the recombination site to a sequence of less than 65 bp. In addition, by mutational analysis of the recombination potential of a hybrid plasmid containing the entire 2mu circle genome, we have shown that FLP is only the 2mu circle gene necessary for this site-specific recombination. Finally, we describe a sensitive assay for recombination between the repeated sequences of 2mu circle; using it, we demonstrate that even in the absence of FLP gene product, recombination between the repeats occurs at a low but detectable level during meiosis.  相似文献   

7.
The 2 mu plasmid of the yeast Saccharomyces cerevisiae encodes a site-specific recombination system consisting of the FLP protein and two inverted recombination sites on the plasmid. The minimal fully functional substrate for in-vitro recombination in this system consists of two FLP protein binding sites separated by an eight base-pair spacer sequence. We have used site-directed mutagenesis to generate every possible mutation (36 in all) within 11 base-pairs of one FLP protein binding site and the base-pair immediately flanking it. The base-pairs within the binding site can be separated into three classes on the basis of these results. Thirty of the 36 sequence changes, including all three at seven different positions (class I) produce a negligible or modest effect on FLP protein-promoted recombination. In particular, most transition mutations are well-tolerated in this system. In only one case do all three possible mutations produce large effects (class II). At three positions, clustered near the site at which DNA is cleaved by FLP protein, one of the two possible transversions produces a large effect on recombination, while the other two changes produce modest effects (class III). For seven mutants for which FLP protein binding was measured, a direct correlation between decreases in recombination activity and in binding was observed. Positive effects on the reaction potential of mutant sites are observed when the other FLP binding site in a single recombination site is unaltered or when the second recombination site in a reaction is wild-type. This suggests a functional interaction between FLP binding sites both in cis and in trans. When two mutant recombination sites (each with 1 altered FLP binding site) are recombined, the relative orientation of the mutations (parallel or antiparallel) has no effect on the result. These results provide an extensive substrate catalog to complement future studies in this system.  相似文献   

8.
The plasmid pE194 (3.7 kilobases) is capable of integrating into the genome of the bacterial host Bacillus subtilis in the absence of the major homology-dependent RecE recombination system. Multiple recombination sites have been identified on both the B. subtilis chromosome and pE194 (J. Hofemeister, M. Israeli-Reches, and D. Dubnau, Mol. Gen. Genet. 189:58-68, 1983). The B. subtilis chromosomal recombination sites were recovered by genetic cloning, and these sites were studied by nucleotide sequence analysis. Recombination had occurred between regions of short nucleotide homology (6 to 14 base pairs) as indicated by comparison of the plasmid and the host chromosome recombination sites with the crossover sites of the integration products. Recombination between the homologous sequences of the plasmid and the B. subtilis genome produced an integrated pE194 molecule which was bounded by direct repeats of the short homology. These results suggest a recombination model involving a conservative, reciprocal strand exchange between the two recombination sites. A preferred plasmid recombination site was found to occur within a 70-base-pair region which contains a GC-rich dyad symmetry element. Five of seven pE194-integrated strains analyzed had been produced by recombination at different locations within this 70-base-pair interval, located between positions 860 and 930 in pE194. On the basis of these data, mechanisms are discussed to explain the recombinational integration of pE194.  相似文献   

9.
The FLP recombinase from the 2 microns plasmid of Saccharomyces cerevisiae contains a region from amino acid 185 to 203 that is conserved among several FLP-like proteins from different yeasts. Using site-directed mutagenesis, we have made mutations in this region of the FLP gene. Five of twelve mutations in the region yielded proteins that were unable to bind to the FLP recombination target (FRT) site. A change of arginine at position 191 to lysine resulted in a protein (FLP-R191K) that could bind to the FRT site but could not catalyze recombination. This mutant protein accumulated as a stable protein-DNA complex in which one of the two bound FLP proteins was covalently attached to the DNA. FLP-R191K was defective in strand exchange and ligation and was unable to promote protein-protein interaction with half-FRT sites. The conservation of three residues in all members of the integrase family of site-specific recombinases (His305, Arg308, Tyr343 in FLP) implies a common mechanism of recombination. The conservation of arginine 191 and the properties of the FLP-R191K mutant protein suggest that this arginine also plays an important role in the mechanism of FLP-mediated site-specific recombination.  相似文献   

10.
The FLP recombinase of the 2 mu plasmid of Saccharomyces cerevisiae binds to a target containing three 13 base-pair symmetry elements called a, b and c. The symmetry elements b and c are in direct orientation while the a element is in inverted orientation with respect to b and c on the opposite side of an eight base-pair core region. Each symmetry element acts as a binding site for the FLP protein. The FLP protein can form three different complexes with the FLP recognition target (FRT site) according to the number of elements within the site that are occupied by the FLP protein. Binding of FLP to the FRT site induces DNA bending. We have measured the angles of bends caused by the binding of the FLP protein to full and partial FRT sites. We find that FLP induces three types of bend in the FRT-containing DNA. The type I bend is approximately 60 degrees and results from a molecule of FLP bound to one symmetry element. The type II bend is greater than 144 degrees and results from FLP molecules bound to symmetry elements a and b. The type III bend is approximately 65 degrees and results from FLP proteins bound to symmetry elements b and c. Certain FLP proteins that are defective in recombination can generate the type I and type III bends but are impaired in their ability to induce the type II bend. We discuss the role of bending in FLP-mediated recombination.  相似文献   

11.
We examined the effect of plasmid-encoded gene products on two DNase-I-sensitive regions of DNA in the yeast 2 micron plasmid nucleoprotein complex. For these studies, each sensitive region was cloned into an appropriate vector, and the chimeric plasmids were transformed into yeast. Nucleoprotein complexes of the chimeric plasmids were partially purified and tested for sensitivity to DNase I digestion. One sensitive region is between the 3' end of the 2 micron plasmid coding region D and the plasmid REP3 locus. This region was more sensitive and exhibited a different cleavage pattern when purified from a yeast strain containing endogenous 2 micron plasmid copies than when purified from a yeast strain lacking plasmid copies. Examination of the effect of individual gene products and combinations of the various gene products revealed that the plasmid's REP1, REP2 and D loci were all necessary to restore the pattern to that found in the preparation containing endogenous 2 micron plasmid copies. The other sensitive region studied brackets the binding site of the plasmid-encoded FLP protein, which catalyzes site-specific recombination between the 2 micron plasmid's inverted repeated sequences. In contrast to the first sensitive region examined, the sensitive region in the inverted repeat was less sensitive in chimeric plasmids isolated from a yeast strain containing endogenous 2 micron plasmid copies than from one lacking endogenous copies. Presumably, this protection results from the binding of the FLP protein.  相似文献   

12.
The yeast 2-micron circle plasmid encodes a protein, FLP, that mediates site-specific recombination across the two FLP-binding sites of the plasmid. We have used a novel technique, "exonuclease-treated substrate analysis," to determine the minimal duplex DNA sequence needed for this recombination event. A linear DNA containing two FLP sites in a direct orientation was treated with the double-strand specific 3'-exonuclease, exonuclease III, to generate molecules with a nested set of single-strand deletions that extended into one of the FLP sites. The DNA was then end-labeled at the sites of the deletions and used as a substrate for recombination in vitro. FLP-mediated recombination between two FLP sites excised a restriction endonuclease cleavage site from the DNA. Comparison of the fragments produced by restriction enzyme digestion of untreated and FLP-treated DNA showed to the nucleotide the duplex DNA sequence required for FLP-mediated recombination. To examine essential sequences in the opposite DNA strand, similar experiments were done using the 5'-exonuclease encoded by phage T7. The minimal essential duplex DNA sequence lies within the region of the FLP site that was previously shown to be protected from nuclease digestion in the presence of FLP. A modified form of this technique can be used to study the minimal sequence requirements of site-specific DNA binding proteins.  相似文献   

13.
We have studied the mechanism of reaction of the FLP protein of the yeast 2-micron plasmid on linear substrates. The products of the reaction are dependent upon the concentration of FLP protein. At low concentrations of FLP, products resulting from intramolecular recombination between two FLP target sites accumulate. At higher concentrations of FLP, intermolecular recombination results in the accumulation of products which are larger than the starting substrate. At higher concentrations still, FLP-promoted recombination is inhibited. Potassium chloride (0.15 M) inhibits the intermolecular reaction and also prevents the inhibition of FLP-mediated recombination caused by high concentrations of FLP protein. We present a model that explains these findings.  相似文献   

14.
Contact points between the FLP protein of the yeast 2-micron plasmid and its recombination site have been defined. Important features of the region previously defined as the minimal recombination site in vitro include a pair of 13-base pair inverted repeats separated by an 8-base pair spacer. The two FLP protein-binding sites within this region are 12 base pairs in length. In each case they include the internal 11 base pairs of one of the 13-base pair repeats, as well as the adjacent base pair within the spacer. The internal 6 base pairs within the spacer are not involved in binding or recognition by FLP protein. When the size of the spacer is increased or decreased by one base pair, the distance between the cleavage points is also increased or decreased correspondingly by one base pair. Points of cleavage are unaffected by changes in the spacer sequence. Specific contact points involving purine residues, identified by methylation protection and recombination interference experiments, are located in both the major and minor grooves of the DNA. Additional contact points between FLP protein and phosphate groups in the phosphate-deoxyribose backbone are clustered near the cleavage sites.  相似文献   

15.
Attachment site of the genetic element e14.   总被引:5,自引:5,他引:5       下载免费PDF全文
The Escherichia coli K-12 genetic element, e14, contains a 216-base-pair region that is homologous to a portion of the host chromosome. This region serves as the integration site for the element. The 216-base-pair homology is interrupted by 28 mismatches distributed through the sequence. The actual integrative crossover occurs within the first 11 base pairs from one end of the region. To test factors which affect e14 site-specific recombination, we cloned the attachment sites of free e14 and the host chromosome into the same plasmid. The cloned attachment sites recombined intramolecularly in a process that required the presence of a chromosomal copy of e14 in the host cell as well as the induction of SOS. Recombination events that mimicked both integration and excision occurred under the same conditions and to roughly the same extent.  相似文献   

16.
The FLP recombinase of the 2 microns plasmid of Saccharomyces cerevisiae is a member of the integrase family of site-specific recombinases. Recombination catalyzed by members of this family proceeds via the ordered cleavage and religation of four strands of DNA. Although the amino acid sequences of integrase family members are quite different, each recombinase maintains an absolutely conserved tetrad of amino acids (R-191, H-305, R-308, Y-343; numbers are those of the FLP protein). This tetrad is presumed to reflect a common chemical mechanism for cleavage and ligation that has evolved among all family members. The tyrosine is the nucleophile that causes phosphodiester bond cleavage and covalently attaches to the 3'-PO4 terminus, whereas the other three residues have been implicated in ligation of strands. It has recently been shown that cleavage by FLP takes place in trans; that is, a FLP molecule binds adjacent to the site of cleavage but receives the nucleophilic tyrosine from a molecule of FLP that is bound to another FLP-binding element (J.-W. Chen, J. Lee, and M. Jayaram, Cell 69:647-658, 1992). These studies led us to examine whether the ligation step of the FLP reaction is performed by the FLP molecule bound adjacent to the cleavage site (ligation in cis). We have found that FLP promotes ligation in cis. Furthermore, using in vitro complementation analysis, we have classified several mutant FLP proteins into one of two groups: those proteins that are cleavage competent but ligation deficient (group I) and those that are ligation competent but cleavage defective (group II). This observation suggests that the active site of FLP is composed of several amino acid residues from each of two FLP molecules.  相似文献   

17.
When yeast FLP recombinase is expressed from the phage lambda PR promoter in a Salmonella host, it cannot efficiently repress an operon controlled by an operator/promoter region that includes a synthetic, target FLP site. On the basis of this phenotype, we have identified four mutant FLP proteins that function as more efficient repressors of such an operon. At least two of these mutant FLP proteins bind better to the FLP site in vivo and in vitro. One mutant changes the presumed active site tyrosine residue of FLP protein to phenylalanine, is blocked in recombination, and binds the FLP site about five-fold better than the wild-type protein. A second mutant protein that functions as a more efficient repressor retains catalytic activity. We conclude that the eukaryotic yeast FLP recombinase, when expressed in a heterologous prokaryotic host, can function as a repressor, and that mutant FLP proteins that bind DNA more tightly may be selected as more efficient repressors.  相似文献   

18.
19.
20.
The 2 mu plasmid of the yeast Saccharomyces cerevisiae encodes a site-specific recombination system consisting of plasmid-encoded FLP protein and two recombination sites on the plasmid. The recombination site possesses a specific orientation, which is determined by an asymmetric 8-base pair spacer sequence separating two 13-base pair inverted repeats. The outcome or directionality of site-specific recombination is defined by the alignment of two sites in the same orientation during the reaction. Sites containing point mutations or 1-base pair insertions or deletions within the spacer generally undergo recombination with unaltered sites at reduced levels. In contrast, recombination between the two identical mutant sites (where homology is restored) proceeds efficiently in all cases. Sites containing spacer sequences of 10 base pairs or more are nonfunctional under all conditions. A recombination site in which 5 base pairs are changed to yield an entirely symmetrical spacer sequence again recombines efficiently, but only with an identical site. This reaction, in addition, produces a variety of new products which can only result from random alignment of the two sites undergoing recombination, i.e. the reaction no longer exhibits directionality. These and other results demonstrate that both the efficiency and directionality of site-specific recombination is dependent upon homology between spacer sequences of the two recombining sites. This further implies that critical DNA-DNA interactions between the spacer region of the two sites involved in the reaction occur at some stage during site-specific recombination in this system. The specific spacer sequence itself appears to be unimportant as long as homology is maintained; thus, these sequences are probably not involved in recognition by FLP protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号