首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 116 毫秒
1.
A chimeric yellow fever (YF) virus/Japanese encephalitis (JE) virus vaccine (ChimeriVax-JE) was constructed by insertion of the prM-E genes from the attenuated JE virus SA14-14-2 vaccine strain into a full-length cDNA clone of YF 17D virus. Passage in fetal rhesus lung (FRhL) cells led to the emergence of a small-plaque virus containing a single Met-->Lys amino acid mutation at E279, reverting this residue from the SA14-14-2 to the wild-type amino acid. A similar virus was also constructed by site-directed mutagenesis (J. Arroyo, F. Guirakhoo, S. Fenner, Z.-X. Zhang, T. P. Monath, and T. J. Chambers, J. Virol. 75:934-942, 2001). The E279 mutation is located in a beta-sheet in the hinge region of the E protein that is responsible for a pH-dependent conformational change during virus penetration from the endosome into the cytoplasm of the infected cell. In independent transfection-passage studies with FRhL or Vero cells, mutations appeared most frequently in hinge 4 (bounded by amino acids E266 to E284), reflecting genomic instability in this functionally important region. The E279 reversion caused a significant increase in neurovirulence as determined by the 50% lethal dose and survival distribution in suckling mice and by histopathology in rhesus monkeys. Based on sensitivity and comparability of results with those for monkeys, the suckling mouse is an appropriate host for safety testing of flavivirus vaccine candidates for neurotropism. After intracerebral inoculation, the E279 Lys virus was restricted with respect to extraneural replication in monkeys, as viremia and antibody levels (markers of viscerotropism) were significantly reduced compared to those for the E279 Met virus. These results are consistent with the observation that empirically derived vaccines developed by mouse brain passage of dengue and YF viruses have increased neurovirulence for mice but reduced viscerotropism for humans.  相似文献   

2.
The small proline-rich protein, SPRR1, is a marker gene whose expression in conducting airway epithelium is elevated under a variety of conditions that enhance squamous differentiation. The purpose of this study is to elucidate the nature of the SPRR1 sequence involved in cross-linked envelope formation in a tissue/cell type, such as conducting airway epithelium, that normally does not express squamous function except after injury or maintenance in culture. For this, a Flag-SPRR1 fusion protein expression system has been developed. Using the liposome-mediated gene transfer technique on passage 1 culture of human tracheobronchial epithelial (TBE) cells, the Flag-SPRR1 fusion protein can be expressed and detected immunologically by both anti-Flag and anti-SPRR1 antibodies. The incorporation of Flag-SPRR1 fusion protein into cross-linked envelopes can be demonstrated when transfected human passage 1 TBE cultures are treated with phorbol 12-myristate 13-acetate and high calcium (1.5 mM). By deletion and site-directed mutagenesis, two distinct roles of the amino- and carboxyl-terminal sequences of SPRR1 have been demonstrated. First, we demonstrated that the amino-terminal sequence of SPRR1 protein is required for the incorporation of the fusion protein into cross-linked envelopes, whereas a deletion on the carboxyl-terminal region or on the middle repetitive unit has no effect. Interestingly, insertion of a 24-amino acid peptide of monkey MUC2 repetitive sequence in the amino-terminus of SPRR1 protein had a stimulatory effect. Site-directed mutagenesis on the following amino acid residues, Lys(7), Gln(88), and Lys(89), which were found previously to participate in the cross-linked envelope formation of keratinocytes, had no detrimental effect on the incorporation. However, mutations on Gln clusters, such as Gln(4)-Gln(6) and Gln(22)-Gln(25), had detrimental effects on the incorporation. These results suggest an amino-terminal sequence-dependent and multiple cross-linked sites for the incorporation of Flag-SPRR1 fusion protein into cross-linked envelopes of cultured human TBE cells. Second, we demonstrated that the carboxyl terminus of SPRR1 protein is required for a high level of Flag-fusion protein expression. A deletion in the carboxyl region or a mutation on the last lysine residue of the carboxyl end had a detrimental effect on the level of Flag-SPRR1 fusion protein expressed in transfected cells. In contrast, there was only a slight decrease in the level of expression if the amino-terminus was deleted. Interestingly, the efficiency for fusion protein to incorporate into cross-linked envelopes was elevated by the mutation at the carboxyl end. These results suggest distinct roles, perhaps coordinately, for both amino- and carboxyl-terminal sequences in the regulation of the life cycle of SPRR1 protein in cultured TBE cells.  相似文献   

3.
All members of the inward rectifiier K(+) (Kir) channel family are activated by phosphoinositides and other amphiphilic lipids. To further elucidate the mechanistic basis, we examined the membrane association of Kir6.2 fragments of K(ATP) channels, and the effects of site-directed mutations of these fragments and full-length Kir6.2 on membrane association and K(ATP) channel activity, respectively. GFP-tagged Kir6.2 COOH terminus and GFP-tagged pleckstrin homology domain from phospholipase C delta1 both associate with isolated membranes, and association of each is specifically reduced by muscarinic m1 receptor-mediated phospholipid depletion. Kir COOH termini are predicted to contain multiple beta-strands and a conserved alpha-helix (residues approximately 306-311 in Kir6.2). Systematic mutagenesis of D307-F315 reveals a critical role of E308, I309, W311 and F315, consistent with residues lying on one side of a alpha-helix. Together with systematic mutation of conserved charges, the results define critical determinants of a conserved domain that underlies phospholipid interaction in Kir channels.  相似文献   

4.
We have previously established that isoprenylation of the prostacyclin receptor (IP) is required for its efficient G protein coupling and effector signaling (Hayes, J. S., Lawler, O. A., Walsh, M. T., and Kinsella, B. T. (1999) J. Biol. Chem. 274, 23707-23718). In the present study, we sought to investigate whether the IP may actually be subject to palmitoylation in addition to isoprenylation and to establish the functional significance thereof. The human (h) IP was efficiently palmitoylated at Cys(308) and Cys(311), proximal to transmembrane domain 7 within its carboxyl-terminal (C)-tail domain, whereas Cys(309) was not palmitoylated. The isoprenylation-defective hIP(SSLC) underwent palmitoylation but did not efficiently couple to G(s) or G(q), confirming that isoprenylation is required for G protein coupling. Deletion of C-tail sequences distal to Val(307) generated hIP(Delta307) that was neither palmitoylated nor isoprenylated and did not efficiently couple to G(s) or to G(q), whereas hIP(Delta312) was palmitoylated and ably coupled to both effector systems. Conversion of Cys(308), Cys(309), Cys(311), Cys(308,309), or Cys(309,311) to corresponding Ser residues, while leaving the isoprenylation CAAX motif intact, did not affect hIP coupling to G(s) signaling, whereas mutation of Cys(308,311) and Cys(308,309,311) abolished signaling, indicating that palmitoylation of either Cys(308) or Cys(311) is sufficient to maintain functional G(s) coupling. Although mutation of Cys(309) and Cys(311) did not affect hIP-mediated G(q) coupling, mutation of Cys(308) abolished signaling, indicating a specific requirement for palmitoylation of Cys(308) for G(q) coupling. Consistent with this, neither hIP(C308S,C309S), hIP(C308S,C311S), nor hIP(C308S,C309S,C311S) coupled to G(q). Taken together, these data confirm that the hIP is isoprenylated and palmitoylated, and collectively these modifications modulate its G protein coupling and effector signaling. We propose that through lipid modification followed by membrane insertion, the C-tail domain of the IP may contain a double loop structure anchored by the dynamically regulated palmitoyl groups proximal to transmembrane domain 7 and by a distal farnesyl isoprenoid permanently attached to its carboxyl terminus.  相似文献   

5.
One of the most common protein tyrosine phosphatase-2 (SHP2) mutations in Noonan syndrome is the N308D mutation, and it increases the activity of the protein. However, the molecular basis of the activation of N308D mutation on SHP2 conformations is poorly understood. Here, molecular dynamic simulations were performed on SHP2 and SHP2-N308D to explore the effect of N308D mutation on SHP2 cause gain of function activity, respectively. The principal component analysis, dynamic cross-correlation map, secondary structure analysis, residue interaction networks, and solvent accessible surface area analysis suggested that the N308D mutation distorted the residues interactions network between the allosteric site (residue Gly244-Gly246) and C-SH2 domain, including the hydrogen bond formation and the binding energy. Meanwhile, the activity of catalytic site (residue Gly503-Val505) located in the Q-loop in mutant increased due to this region's high fluctuations. Therefore, the substrate had more chances to access to the catalytic activity site of the precision time protocol domain of SHP2-N308D, which was easy to be exposed. In addition, we had speculated that the Lys244 located in the allosteric site was the key residue which lead to the protein conformation changes. Consequently, overall calculations presented in this study ultimately provide a useful understanding of the increased activity of SHP2 caused by the N308D mutation.  相似文献   

6.
为了解分离自黑龙江省大兴安岭林区全沟硬蜱中的DXAL-5、12、13、16、18,21共6株森林脑炎(TBE)病毒E蛋白基因特征并确定病毒基因型,应用RT-PCR技术对6株病毒E蛋白基因进行体外扩增、克隆、测序.结果发现,6株病毒E蛋白基因的核苷酸序列长均为1 488 bp,推导的氨基酸序列长均为496 aa.与TBE参考毒株E蛋白基因进行比较,这6株病毒与远东亚型同源性最高,其次是西伯利亚亚型,与欧洲亚型同源性最差;在决定亚型特征的氨基酸位点多数属于TBE病毒远东亚型.E蛋白基因推导的氨基酸种系发生树分析表明,6株病毒均在远东亚型分枝内.因此就E蛋白基因而言,DXAL-5、12、13、16、18、21株均属于TBE病毒的远东亚型.新分离毒株与Senzhang株同源性较高,种系发生关系也比较接近,推测疫苗株对新分离毒株仍具有很好的保护作用.但是在E蛋白的A、B和C抗原决定区内,6株病毒均有不同程度的氨基酸改变,这些突变有可能影响E蛋白的功能.  相似文献   

7.
The active site lysyl residue (Lys258) of E. coli aspartate amino transferase was substituted for an arginyl residue by oligonucleotide-directed, site-specific mutagenesis. The mutant enzyme was obviously unable to form an aldimine bond with pyridoxal 5'-phosphate but firmly bound the coenzyme. The finding that the mutation did not lead to entire loss in the enzymic activity suggests that Lys258 may not be essential but auxiliary for enzymic catalysis. It is also conceived that the positive charge provided by Arg258 may contribute to the enzymic catalysis.  相似文献   

8.
The role of conserved amino acid residues in the polymerase domain of Escherichia coli primase has been studied by mutagenesis. We demonstrate that each of the conserved amino acids Arg146, Arg221, Tyr230, Gly266, and Asp311 is involved in the process of catalysis. Residues Glu265 and Asp309 are also critical because a substitution of each amino acid irreversibly destroys the catalytic activity. Two K229A and M268A mutant primase proteins synthesize only 2-nucleotide products in de novo synthesis reactions under standard conditions. Y267A mutant primase protein synthesizes both full-size and 2-nucleotide RNA, but with no intermediate-size products. From these data we discuss the significant step of the 2-nucleotide primer RNA synthesis by E. coli primase and the role of amino acids Lys229, Tyr267, and Met268 in primase complex stability.  相似文献   

9.
The type 1 corticotropin-releasing hormone receptor (CRH-R1) influences biological responses important for adaptation to stressful stimuli, through activation of multiple downstream effectors. The structural motifs within CRH-R1 that mediate G protein activation and signaling selectivity are unknown. The aim of this study was to gain insights about important structural determinants within the third intracellular loop (IC3) of the human CRH-R1α important for cAMP and ERK1/2 pathways activation and selectivity. We investigated the role of the juxtamembrane regions of IC3 by mutating amino acid cassettes or specific residues to alanine. Although simultaneous tandem alanine mutations of both juxtamembrane regions Arg(292)-Met(295) and Lys(311)-Lys(314) reduced ligand binding and impaired signaling, all other mutant receptors retained high affinity binding, indistinguishable from wild-type receptor. Agonist-activated receptors with tandem mutations at the proximal or distal terminal segments enhanced activation of adenylyl cyclase by 50-75% and diminished activation of inositol trisphosphate and ERK1/2 by 60-80%. Single Ala mutations identified Arg(292), Lys(297), Arg(310), Lys(311), and Lys(314) as important residues for the enhanced activation of adenylyl cyclase, partly due to reduced inhibition of adenylyl cyclase activity by pertussis toxin-sensitive G proteins. In contrast, mutation of Arg(299) reduced receptor signaling activity and cAMP response. Basic as well as aliphatic amino acids within both juxtamembrane regions were identified as important for ERK1/2 phosphorylation through activation of pertussis toxin-sensitive G proteins as well as G(q) proteins. These data uncovered unexpected roles for key amino acids within the highly conserved hydrophobic N- and C-terminal microdomains of IC3 in the coordination of CRH-R1 signaling activity.  相似文献   

10.
Endo-beta-N-acetylglucosaminidase from Arthrobacter protophormiae (Endo-A) has a high level of transglycosylation activity. To determine which amino acids are involved in this activity, we employed deletion analysis, as well as random and site-directed mutagenesis. Using PCR random mutagenesis, 11 mutants with greatly decreased levels of enzyme activity were isolated. Six catalytically essential amino acids were identified by site-directed mutagenesis. Mutants E173G, E175Q, D206G, and D270N had markedly reduced hydrolysis activity, while mutants V109D, E173D, and E173Q lost all enzymatic activity, indicating that Val-109 and Glu-173 are important for the catalytic function. Moreover, we isolated a random mutation that abolished the transglycosylation activity without affecting the hydrolysis activity. The Trp-216 to Arg mutation was identified, by site-directed mutagenesis, as that responsible for the loss of transglycosylation activity. While other mutants of Trp-216 showed reduced activity, mutation to another positively charged residue (Lys) also abolished the transglycosylation activity. Sequence comparison with two other endo-beta-N-acetylglucosaminidases, that possess transglycosylation activity and that have been cloned recently, reveals a high degree of identity in the N-terminal regions of the three enzymes. These results indicate that the tryptophan residue at position 216 of Endo-A has a key role in the transglycosylation.  相似文献   

11.
A G Pletnev  M Bray    C J Lai 《Journal of virology》1993,67(8):4956-4963
Two new chimeric flaviviruses were constructed from full-length cDNAs that contained tick-borne encephalitis virus (TBEV) CME or ME structural protein genes and the remaining genes derived from dengue type 4 virus (DEN4). Studies involving mice inoculated intracerebrally with the ME chimeric virus indicated that it retained the neurovirulence of its TBEV parent from which its pre-M and E genes were derived. However, unlike parental TBEV, the chimeric virus did not produce encephalitis when mice were inoculated peripherally, indicating a loss of neuroinvasiveness. In the present study, the ME chimeric virus (vME) was subjected to mutational analysis in an attempt to reduce or ablate neurovirulence measured by direct inoculation of virus into the brain. We identified three distinct mutations that were each associated independently with a significant reduction of mouse neurovirulence of vME. These mutations ablated (i) the TBEV pre-M cleavage site, (ii) the TBEV E glycosylation site, or (iii) the first DEN4 NS1 glycosylation site. In contrast, ablation of the second DEN4 NS1 glycosylation site or the TBE pre-M glycosylation site or amino acid substitution at two positions in the TBEV E protein increased neurovirulence. The only conserved feature of the three attenuated mutants was restriction of virus yield in both simian and mosquito cells. Following parenteral inoculation, these attenuated mutants induced complete resistance in mice to fatal encephalitis caused by the highly neurovirulent vME.  相似文献   

12.
A fusion protein, consisting of the N-terminal 81 amino acids from an inactive bovine DNase I (Q38,E39-E38,Q39) and two sequential synthetic IgG-binding domains based upon domain B of Protein A from Staphylococcus aureus has been shown to bind to porcine IgG with a similar affinity and pH profile to Protein A. The same residue in each B domain (Tyr111 and Tyr169) has been mutated by cassette mutagenesis to Ser, Glu, His, Lys or Arg and the effect of the mutation on binding interactions with porcine IgG investigated. The evidence presented suggests that the interactions at the B domain are highly sensitive to the presence of a charged residue.  相似文献   

13.
14.
The change in the structural stability of Escherichia coli ribonuclease HI (RNase HI) due to single amino acid substitutions has been estimated computationally by the stability profile of mutant protein (SPMP) [Ota, M., Kanaya, S. Nishikawa, K., 1995. Desk-top analysis of the structural stability of various point mutations introduced into ribonuclease H. J. Mol. Biol. 248, 733-738]. As well, an effective strategy using random mutagenesis and genetic selection has been developed to obtain E. coli RNase HI mutants with enhanced thermostability [Haruki, M., Noguchi, E., Akasako, A., Oobatake, M., Itaya, M., Kanaya, S., 1994. A novel strategy for stabilization of Escherichia coli ribonuclease HI involving a screen for an intragenic suppressor of carboxyl-terminal deletions. J. Biol. Chem. 269, 26904-26911]. In this study, both methods were combined: random mutations were individually introduced to Lys99-Val101 on the N-terminus of the alpha-helix IV and the preceding beta-turn, where substitutions of other amino acid residues were expected to significantly increase the stability from SPMP, and then followed by genetic selection. Val101 to Ala, Gln, and Arg mutations were selected by genetic selection. The Val101-->Ala mutation increased the thermal stability of E. coli RNase HI by 2.0 degrees C in Tm at pH 5.5, whereas the Val101-->Gln and Val101-->Arg mutations decreased the thermostability. Separately, the Lys99-->Pro and Asn100-->Gly mutations were also introduced directly. The Lys99-->Pro mutation increased the thermostability of E. coli RNase HI by 1.8 degrees C in Tm at pH 5.5, whereas the Asn100-->Gly mutation decreased the thermostability by 17 degrees C. In addition, the Lys99-->Pro mutation altered the dependence of the enzymatic activity on divalent metal ions.  相似文献   

15.
Site-directed mutagenesis experiments have been carried out to determine the structure-function relationship of human aromatase. By sequence comparison, the region in aromatase that corresponds to the distal helix of cytochrome P-450cam has been identified to be Gln-298 to Val-313. Eight aromatase mutants with changes in this region, i.e. C299A, E302L, P308F, D309N, D309A, T310S, T310C, and S312C, have been generated using a mammalian cell stable-expression system. The results from site-directed mutagenesis studies indicate that the region containing Gln-298 to Val-313 is indeed a very important part of the active site of aromatase. The catalytic properties of P308F, D309N, and D309A have been examined in detail and are discussed. Active site-directed labeling is also an important approach to investigate the structure-function relationship of aromatase. HPLC-linked electrospray mass spectrometry is indicated as a useful technique for the characterization of active site-directed probe-modified enzyme. The mass spectral analysis of aromatase suggests that aromatase is glycosylated.  相似文献   

16.
Murine multidrug resistance protein 1 (mrp1), unlike human MRP1, does not confer resistance to anthracyclines. Previously, we have shown that a human/murine hybrid protein containing amino acids 959-1187 of MRP1 can confer resistance to these drugs. We have now examined the functional characteristics of mutant proteins in which we have converted individual amino acids in the comparable region of mrp1 to those present at the respective locations in MRP1. These mutations had no effect on the drug resistance profile conferred by mrp1 with the exception of converting glutamine 1086 to glutamate, as it is in the corresponding position (1089) in MRP1. This mutation created a protein that conferred resistance to doxorubicin without affecting vincristine resistance, or the ability of mrp1 to transport leukotriene C(4) (LTC(4)) and 17beta-estradiol 17-(beta-d-glucuronide) (E(2)17betaG). Furthermore, mutation Q1086D conferred the same phenotype as mutation Q1086E while the mutation Q1086N did not detectably alter the drug resistance profile of mrp1, suggesting that an anionic side chain was required for anthracycline resistance. To confirm the importance of MRP1 E1089 for conferring resistance to anthracyclines, we mutated this residue to Gln, Asp, Ala, Leu, and Lys in the human protein. The mutation E1089D showed the same phenotype as MRP1, while the E1089Q substitution markedly decreased resistance to anthracyclines without affecting LTC(4) and E(2)17betaG transport. Conversion of Glu-1089 to Asn, Ala, or Leu had a similar effect on resistance to anthracyclines, while conversion to a positive amino acid, Lys, completely eliminated resistance to anthracyclines and vincristine without affecting transport of LTC(4), E(2)17betaG, and the GSH-dependent substrate, estrone-3-sulfate. These results demonstrate that an acidic amino acid residue at position 1089 in predicted TM14 of MRP1 is critical for the ability of the protein to confer drug resistance particularly to the anthracyclines, but is not essential for its ability to transport conjugated organic anions such as LTC(4) and E(2)17betaG.  相似文献   

17.
SET domain containing 6 (SETD6) monomethylates the RelA subunit of nuclear factor kappa B (NF-κB). The ankyrin repeats of G9a-like protein (GLP) recognizes RelA monomethylated at Lys310. Adjacent to Lys310 is Ser311, a known phosphorylation site of RelA. Ser311 phosphorylation inhibits Lys310 methylation by SETD6 as well as binding of Lys310me1 by GLP. The structure of SETD6 in complex with RelA peptide containing the methylation site, in the presence of S-adenosyl-L-methionine, reveals a V-like protein structure and suggests a model for NF-κB binding to SETD6. In addition, structural modeling of the GLP ankyrin repeats bound to Lys310me1 peptide provides insight into the molecular basis for inhibition of Lys310me1 binding by Ser311 phosphorylation. Together, these findings provide a structural explanation for a key cellular signaling pathway centered on RelA Lys310 methylation, which is generated by SETD6 and recognized by GLP, and incorporate a methylation-phosphorylation switch of adjacent lysine and serine residues. Finally, SETD6 is structurally similar to the Rubisco large subunit methyltransferase. Given the restriction of Rubisco to plant species, this particular appearance of the protein lysine methyltransferase has been evolutionarily well conserved.  相似文献   

18.
Single amino acid substitutions of Ag and MHC were used to analyze the fine structure of the influenza hemagglutinin (HA)-derived epitope (HA 307-319) recognized in the context of DR7 molecules by a T cell clone. Putative T cell (HA 308, 310, 311, 313, and 316) and DR (HA 309, 312, and 317) contact residues of the Ag were identified by the use of single amino acid-substituted analogs that were tested for their T cell-activating and DR-binding capacities. The peptide-DR7-T cell interaction was further characterized by the use of a panel of 13 site-directed DR7 mutant transfectants analyzed for their capacity to present Ag to T cells, and for their purified mutant DR7 molecules to bind HA 307-319 or its single amino acid-substituted analogs. Eight mutants lost their Ag-presenting function, whereas only one had any decrease in peptide binding. Finally, for three of the mutants it was possible to correct the deleterious effects of mutation by using a particular single amino acid-substituted analog of the peptide molecule. The observed pattern of complementation led to a model that predicts that the Ag assumes an extended conformation, with a turn, in the binding groove, such that the following residues are in close proximity: DR 86-HA 309, DR 71-HA 312, DR 30-HA 314, and 315.  相似文献   

19.
The active site glutamate, Glu 309, of the puromycin-sensitive aminopeptidase was mutated to glutamine, alanine, and valine. These mutants were characterized with amino acid beta-naphthylamides as substrates and dynorphin A(1-9) as an alternate substrate inhibitor. Conversion of glutamate 309 to glutamine resulted in a 5000- to 15,000-fold reduction in catalytic activity. Conversion of this residue to alanine caused a 25,000- to 100,000-fold decrease in activity, while the glutamate to valine mutation was the most dramatic, reducing catalytic activity 300,000- to 500,000-fold. In contrast to the dramatic effect on catalysis, all three mutations produced relatively small (1.5- to 4-fold) effects on substrate binding affinity. Mutation of a conserved tyrosine, Y394, to phenylalanine resulted in a 1000-fold decrease in k(cat), with little effect on binding. Direct binding of a physiological peptide, dynorphin A(1-9), to the E309V mutant was demonstrated by gel filtration chromatography. Taken together, these data provide a quantitative assessment of the effect of mutating the catalytic glutamate, show that mutation of this residue converts the enzyme into an inactive binding protein, and constitute evidence that this residue acts a general acid/base catalyst. The effect of mutating tyrosine 394 is consistent with involvement of this residue in transition state stabilization.  相似文献   

20.
An amino acid mutation(R127→I) in the 3A non-structural protein of an FMDV serotype Asia1 rabbit-attenuated ZB strain was previously found after attenuation of the virus. To explore the effects of this mutation on viral replication and infection, the amino acid residue isoleucine(I) was changed to arginine(R) in the infectious cDNA clone of the rabbit-attenuated ZB strain by sitedirected mutagenesis, and the R127-mutated virus was rescued. BHK monolayer cells and suckling mice were inoculated with the R127-mutated virus to test its growth property and pathogenicity, respectively. The effects of the R127 mutation on viral replication and virulence were analyzed. The data showed that there was a slight difference in plaque morphology between the R127-mutated and wild-type viruses. The growth rate of the mutated virus was lower in BHK-21 cells and its virulence in suckling mice was also attenuated. This study indicates that the R127 mutation in 3A may play an important role in FMDV replication in vitro and in pathogenicity in suckling mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号