首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The possibility that simultaneous expansion of T regulatory cells (Treg) and T effector cells early postinfection can confer some immunological benefits has not been studied. In this study, we tested the hypothesis that early, simultaneous cytokine expansion of Treg and T effector cells in a tissue infection site can allow these T cell populations to act in concert to control tissue inflammation/damage while containing infection. IL-2 treatments early after Mycobacterium tuberculosis infection of macaques induced simultaneous expansion of CD4(+)CD25(+)Foxp3(+) Treg, CD8(+)CD25(+)Foxp3(+) T cells, and CD4(+) T effector/CD8(+) T effector/Vγ2Vδ2 T effector populations producing anti-M. tuberculosis cytokines IFN-γ and perforin, and conferred resistance to severe TB inflammation and lesions. IL-2-expanded Foxp3(+) Treg readily accumulated in pulmonary compartment, but despite this, rapid pulmonary trafficking/accumulation of IL-2-activated T effector populations still occurred. Such simultaneous recruitments of IL-2-expanded Treg and T effector populations to pulmonary compartment during M. tuberculosis infection correlated with IL-2-induced resistance to TB lesions without causing Treg-associated increases in M. tuberculosis burdens. In vivo depletion of IL-2-expanded CD4(+)Foxp3(+) Treg and CD4(+) T effectors during IL-2 treatment of M. tuberculosis-infected macaques significantly reduced IL-2-induced resistance to TB lesions, suggesting that IL-2-expanded CD4(+) T effector cells and Treg contributed to anti-TB immunity. Thus, IL-2 can simultaneously activate and expand T effector cells and Foxp3(+) Treg populations and confer resistance to severe TB without enhancing M. tuberculosis infection.  相似文献   

3.
Foxp3(+)CD4(+) regulatory T (Treg) cells inhibit immune responses and temper inflammation. IL-17(+)CD4(+) T (Th17) cells mediate inflammation of autoimmune diseases. A small population of IL-17(+)Foxp3(+)CD4(+) T cells has been observed in peripheral blood in healthy human beings. However, the biology of IL-17(+)Foxp3(+)CD4(+) T cells remains poorly understood in humans. We investigated their phenotype, cytokine profile, generation, and pathological relevance in patients with ulcerative colitis. We observed that high levels of IL-17(+)Foxp3(+)CD4(+) T cells were selectively accumulated in the colitic microenvironment and associated colon carcinoma. The phenotype and cytokine profile of IL-17(+)Foxp3(+)CD4(+) T cells was overlapping with Th17 and Treg cells. Myeloid APCs, IL-2, and TGF-β are essential for their induction from memory CCR6(+) T cells or Treg cells. IL-17(+)Foxp3(+)CD4(+) T cells functionally suppressed T cell activation and stimulated inflammatory cytokine production in the colitic tissues. Our data indicate that IL-17(+)Foxp3(+) cells may be "inflammatory" Treg cells in the pathological microenvironments. These cells may contribute to the pathogenesis of ulcerative colitis through inducing inflammatory cytokines and inhibiting local T cell immunity, and in turn may mechanistically link human chronic inflammation to tumor development. Our data therefore challenge commonly held beliefs of the anti-inflammatory role of Treg cells and suggest a more complex Treg cell biology, at least in the context of human chronic inflammation and associated carcinoma.  相似文献   

4.
The ability of dendritic cells (DC) to regulate Ag-specific immune responses via their influence on T regulatory cells (Treg) may be key to their potential as therapeutic tools or targets for the promotion/restoration of tolerance. In this report, we describe the ability of maturation-resistant, rapamycin (RAPA)-conditioned DC, which are markedly impaired in Foxp3(-) T cell allostimulatory capacity, to favor the stimulation of murine alloantigen-specific CD4(+)CD25(+)Foxp3(+) Treg. This was distinct from control DC, especially following CD40 ligation, which potently expanded non-Treg. RAPA-DC-stimulated Treg were superior alloantigen-specific suppressors of T effector responses compared with those stimulated by control DC. Supporting the ability of RAPA to target effector T and B cells, but permit the proliferation and suppressive function of Treg, an infusion of recipient-derived alloantigen-pulsed RAPA-DC followed by a short postoperative course of low-dose RAPA promoted indefinite (>100 day) heart graft survival. This was associated with graft infiltration by CD4(+)Foxp3(+) Treg and the absence of transplant vasculopathy. The adoptive transfer of CD4(+) T cells from animals with long-surviving grafts conferred resistance to rejection. These novel findings demonstrate that, whereas maturation resistance does not impair the capacity of RAPA-DC to modulate Treg, it profoundly impairs their ability to expand T effector cells. A demonstration of this mechanism endorses their potential as tolerance-promoting cellular vaccines.  相似文献   

5.
6.
The Sle1 locus is a key determinant of lupus susceptibility in the NZM2410 mouse model. Within Sle1, we have previously shown that Sle1a expression enhances activation levels and effector functions of CD4(+) T cells and reduces the size of the CD4(+)CD25(+)Foxp3(+) regulatory T cell subset, leading to the production of autoreactive T cells that provide help to chromatin-specific B cells. In this study, we show that Sle1a CD4(+) T cells express high levels of ICOS, which is consistent with their increased ability to help autoreactive B cells. Furthermore, Sle1a CD4(+)CD25(+) T cells express low levels of Foxp3. Mixed bone marrow chimeras demonstrated that these phenotypes require Sle1a to be expressed in the affected CD4(+) T cells. Expression of other markers generally associated with regulatory T cells (Tregs) was similar regardless of Sle1a expression in Foxp3(+) cells. This result, along with in vitro and in vivo suppression studies, suggests that Sle1a controls the number of Tregs rather than their function on a per cell basis. Both in vitro and in vivo suppression assays also showed that Sle1a expression induced effector T cells to be resistant to Treg suppression, as well as dendritic cells to overproduce IL-6, which inhibits Treg suppression. Overall, these results show that Sle1a controls both Treg number and function by multiple mechanisms, directly on the Tregs themselves and indirectly through the response of effector T cells and the regulatory role of dendritic cells.  相似文献   

7.
8.
The balance between regulatory and effector functions is important for maintaining efficient immune responses, while avoiding autoimmunity. The inflammatory skin disease psoriasis is sustained by the ongoing activation of pathogenic effector T cells. We found that a CD4(+) T lymphocyte subpopulation in peripheral blood, phenotypically CD25(high), CTLA-4(+), Foxp3(high) (regulatory T (Treg) cells), is deficient in its suppressor activity in psoriasis. This was associated with accelerated proliferation of CD4(+) responder T cells in psoriasis, the majority of which expressed CXCR3. Nevertheless, criss-cross experiments isolated the defect to psoriatic Treg cells. To examine Treg cells in a nonlymphoid tissue of a human T cell-mediated disease, Treg cells were also analyzed and isolated from the site of inflammation, psoriatic lesional skin. At the regulatory vs effector T cells ratios calculated to be present in skin, however, the psoriatic Treg cell population demonstrated decreased suppression of effector T cells. Thus, dysfunctional blood and target tissue CD4(+)CD25(high) Treg cell activity may lead to reduced restraint and consequent hyperproliferation of psoriatic pathogenic T cells in vivo. These findings represent a critical component of human organ-specific autoimmune disease and may have important implications with regard to the possible therapeutic manipulation of Treg cells in vivo.  相似文献   

9.
10.
11.
12.
Transforming growth factor beta (TGF-β)- and Interleukin-2 (IL-2)-mediated signaling enables the generation and expansion of induced regulatory T (iTreg) cells that carry high hopes for the treatment of chronic inflammatory and autoimmune diseases. Knowledge about factors stabilizing their lineage commitment and lifespan, however, is limited. Here, we investigated the behavior of iTreg cells, derived from apoptosis-defective mouse mutants, during activated cell autonomous cell death, triggered by cytokine-deprivation, or activation-induced cell death (AICD) after restimulation of the T-cell receptor, and compared these responses with those of effector T cells. We observed that iTreg cells were much more sensitive to IL-2-deprivation but poorly susceptible to AICD. In fact, when apoptosis was compromised, T-cell receptor (TCR)-religation resulted in methylation-independent, ERK- and PI3K/mTOR-mediated loss of Foxp3 expression, impaired suppressive capacity and effector cytokine production. Although iTreg cells prevented colitis induction they rapidly lost Foxp3-GFP expression and gained ability to produce effector cytokines thereby imposing Th1 cell fate on resident effector cells. Surprisingly, iTreg cell conversion itself was limited by TGF-β-mediated Bim/Bcl2L11-dependent apoptosis. Hence, the very same cytokine that drives the generation of iTreg cells can trigger their demise. Our results provide novel insights in iTreg cell biology that will assist optimization of iTreg-based therapy.  相似文献   

13.
The concentration of Ag or mitogenic stimuli is known to play an important role in controlling the differentiation of naive CD4(+) T cells into different effector phenotypes. In particular, whereas TCR engagement at low Ag doses in the presence of TGF-β and IL-2 can promote differentiation of Foxp3-expressing induced regulatory T cells (iTregs), high levels of Ag have been shown in vitro and in vivo to prevent Foxp3 upregulation. This tight control of iTreg differentiation dictated by Ag dose most likely determines the quality and duration of an immune response. However, the molecular mechanism by which this high-dose inhibition of Foxp3 induction occurs is not well understood. In this study, we demonstrate that when cells are in the presence of CD28 costimulation, TCR-dependent NF-κB signaling is essential for Foxp3 inhibition at high doses of TCR engagement in mouse T cells. Prevention of Foxp3 induction depends on the production of NF-κB-dependent cytokines by the T cells themselves. Moreover, T cells that fail to upregulate Foxp3 under iTreg-differentiating conditions and high TCR stimulation acquire the capacity to make TNF and IFN-γ, as well as IL-17 and IL-9. Thus, NF-κB helps T cells control their differentiation fate in a cell-intrinsic manner and prevents peripheral iTreg development under conditions of high Ag load that may require more vigorous effector T cell responses.  相似文献   

14.
CD4+ T cells acquire membrane fragments from antigen-presenting-cells via a process termed trogocytosis. Identifying which CD4+ T cells undergo trogocytosis in co-culture with Ag-loaded APC can enrich for antigen-reactive T cells without knowledge of their fine specificity or cytokine-production profiles. We sought to assess the suitability of this method to identify disease relevant effector and regulatory T cells during autoimmune inflammation. Trogocytosis efficiently identified MBP-reactive T cells in vitro and ex-vivo following immunization. However, Foxp3+ regulatory T cells constitutively displayed a higher rate of trogocytosis than their Foxp3- counterparts which limits the potential of trogocytosis to identify antigen-reactive Treg cells. During inflammation a locally elevated rate of trogocytosis (seen in both effector and regulatory T cells isolated from the inflamed CNS) precludes the use of trogocytosis as a measure of antigenic reactivity among cells taken from inflammatory sites. Our results indicate trogocytosis detection can enrich for Ag-reactive conventional T cells in the periphery but is limited in its ability to identify Ag-reactive Treg or T effector cells at sites of inflammation. Increased trogocytosis potential at inflammatory sites also draws into the question the biological significance of this phenomenon during inflammation, in Treg mediated suppression and for the maintenance of tolerance in health and disease.  相似文献   

15.
16.
Foxp3(+) CD4(+) regulatory T cells (Tregs) represent a highly suppressive T cell subset with well-characterized immunosuppressive effects during immune homeostasis and chronic infections, although the role of these cells in acute viral infections is poorly understood. The present study sought to examine the induction of Foxp3(+) CD4(+) Tregs in a nonlethal murine model of pulmonary viral infection by the use of the prototypical respiratory virus influenza A. We establish that influenza A virus infection results in a robust Foxp3(+) CD4(+) T cell response and that regulatory T cell induction at the site of inflammation precedes the effector T cell response. Induced Foxp3(+) CD4(+) T cells are highly suppressive ex vivo, demonstrating that influenza virus-induced Foxp3(+) CD4(+) T cells are phenotypically regulatory. Influenza A virus-induced regulatory T cells proliferate vigorously in response to influenza virus antigen, are disseminated throughout the site of infection and primary and secondary lymphoid organs, and retain Foxp3 expression in vitro, suggesting that acute viral infection is capable of inducing a foreign-antigen-specific Treg response. The ability of influenza virus-induced regulatory T cells to suppress antigen-specific CD4(+) and CD8(+) T cell proliferation and cytokine production correlates closely to their ability to respond to influenza virus antigens, suggesting that virus-induced Tregs are capable of attenuating effector responses in an antigen-dependent manner. Collectively, these data demonstrate that primary acute viral infection is capable of inducing a robust, antigen-responsive, and suppressive regulatory T cell response.  相似文献   

17.
18.
19.
Transforming growth factor (TGFβ) prevents TH1 and TH2 differentiation and converts naïve CD4 cells into Foxp3-expressing T regulatory (Treg) cell1, 2. In sharp contrast, in the presence of pro-inflammatory cytokines, including IL-6, TGFβ not only inhibits Foxp3 expression but also promotes the differentiation of pro-inflammatory IL17-producing CD4 effector T (TH17) cells3-5. This reciprocal TGFβ-dependent differentiation imposes a critical dilemma between pro- and anti-inflammatory immunity and suggests that a sensitive regulatory mechanism must exist to control TGFβ-driven TH17 effector and Treg differentiation. A vitamin A metabolite, retinoic acid (RA), was recently identified as a key modulator of TGFβ-driven immune deviation capable of suppressing TH17 differentiation while promoting Foxp3+Treg generation 6-10.  相似文献   

20.
Interest in the use of regulatory T cells (Tregs) as cellular therapeutics has been tempered by reports of naturally occurring Tregs losing Foxp3 expression and producing IL-17, raising concerns over a switch to pathogenic function under inflammatory conditions in vivo. TGF-β-induced Tregs (inducible Tregs [iTregs]), generated in large numbers in response to disease-relevant Ags, represent the most amenable source of therapeutic Tregs. Using Foxp3-reporter T cells recognizing myelin basic protein (MBP), we investigated the capacity of iTregs to produce effector-associated cytokines under proinflammatory cytokine conditions in vitro and whether this translated into proinflammatory function in vivo. In contrast with naturally occurring Tregs, iTregs resisted conversion to an IL-17-producing phenotype but were able to express T-bet and to produce IFN-γ. iTregs initiated their T-bet expression during their in vitro induction, and this was dependent on exposure to IFN-γ. IL-12 reignited iTreg expression of T-bet and further promoted iTreg production of IFN-γ upon secondary stimulation. Despite losing Foxp3 expression and expressing both T-bet and IFN-γ, MBP-responsive IL-12-conditioned iTregs induced only mild CNS inflammation and only when given in high numbers. Furthermore, iTregs retained an ability to suppress naive T cell clonal expansion in vivo and protected against the development of experimental autoimmune encephalomyelitis. Therefore, despite bearing predictive hallmarks of pathogenic effector function, previously Foxp3(+) iTregs have much lower proinflammatory potential than that of MBP-responsive Th1 cells. Our results demonstrate that autoprotective versus autoaggressive functions in iTregs are not simply a binary relationship to be determined by their relative expression of Foxp3 versus T-bet and IFN-γ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号