首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We previously demonstrated that ceramide-1-phosphate (C1P) stimulates fibroblast and macrophage proliferation, but the mechanisms involved in this action have only been partially described. Here we demonstrate that C1P induces translocation of protein kinase C-alpha (PKC-α) from the soluble to the membrane fraction of bone marrow-derived macrophages. Translocation of this enzyme was accompanied by its phosphorylation on Ser 657 residue. Activation of PKC-α was independent of prior stimulation of phosphatidylinositol-dependent or phosphatidylcholine-dependent phospholipase C activities, but required activation of sphingomyelin synthesis. Inhibition of PKC-α activation also blocked C1P-stimulated macrophage proliferation indicating that this enzyme is essential for the mitogenic effect of C1P.  相似文献   

2.
3.
4.
Mechanistic target of rapamycin (mTOR) integrates multiple extracellular and intracellular signals to regulate cell growth and survival. Hyperactivation of mTOR has been observed in various cancers. Regulation of mTOR activity is thus of importance in physiological processes and tumor development. Here, we present pyruvate dehydrogenase kinase 4 (PDK4) as a novel regulator of mTORC1 signaling. mTORC1 activity was augmented with PDK4 overexpression and reduced by PDK4 suppression in various cell lines. Furthermore, PDK4 bound to cAMP-response element-binding protein (CREB) and prevented its degradation. The enhanced CREB consequently transactivated the expression of Ras homolog enriched in brain (RHEB), a direct key activator of mTORC1, independent of AMP-activated protein kinase or tuberous sclerosis complex protein 2. PDK4 potentiated the mTORC1 effectors hypoxia-inducible factor 1α and pyruvate kinase isozymes M2 and promoted aerobic glycolysis (Warburg effect). Knockdown of PDK4 suppressed the tumor development of cancer cells with activated mTORC1. The abundance of PDK4 dictated the responsiveness of cells to the mTOR inhibitor, rapamycin. Combinatory suppression of mTOR and PDK4 exerted synergistic inhibition on cancer cell proliferation. Therefore, PDK4 promotes tumorigenesis through activation of the CREB-RHEB-mTORC1 signaling cascade.  相似文献   

5.
We previously reported that incubation of bone-marrow derived macrophages in the absence of macrophage-colony stimulating factor (M-CSF), a cytokine that is essential for their growth and survival, resulted in stimulation of acid sphingomyelinase, accumulation of ceramides, and induction of apoptosis [A. Gomez-Munoz et al. 2004. Ceramide 1-phosphate blocks apoptosis through inhibition of acid sphingomyelinase in macrophages. J Lipid Res 45: 99–105]. Here, we show that alveolar NR8383 macrophages, which are not dependent on M-CSF for viability, undergo apoptosis when they are incubated in the absence of serum. NR8383 cells showed increased levels of ceramides under apoptotic conditions, but in contrast to bone marrow macrophage acid and neutral sphingomyelinases were only slightly activated. We found that the major mechanism for ceramide generation in NR8383 macrophages was stimulation of their synthesis de novo. This action involved activation of serine palmitoyltransferase (SPT), the key regulatory enzyme of this pathway. A relevant finding was that ceramide 1-phosphate (C1P) inhibited SPT activity and ceramide accumulation leading to inhibition of apoptosis. Furthermore, C1P enhanced the activity of antiapoptotic protein kinase B and its downstream effector nuclear factor kappa B. These observations add a new dimension to the understanding of the pro-survival actions of C1P in mammalian cells.  相似文献   

6.
Macrophages play vital roles in inflammatory responses, and their number at sites of inflammation is strictly regulated by cell death and division. Here, we demonstrate that production of nitric oxide (NO) is a major mechanism whereby ceramide-1-phosphate (C1P) blocks apoptosis in macrophages. However, NO failed to stimulate macrophage proliferation. The prosurvival effect of C1P was blocked by inhibitors of inducible NO synthase. The antiapoptotic effect of C1P was also blocked by phosphatidylinositol 3-kinase or nuclear factor-kappa B inhibitors. Moreover, NO reversed the inhibitory effect of C1P on acid sphingomyelinase, but the prosurvival effect of C1P was independent of this action.  相似文献   

7.
In human platelets the endocannabinoid 2-arachidonoylglycerol (2-AG) stimulates some important pathways leading to thromboxane B2 formation, calcium intracellular elevation, ATP secretion and actin polymerisation. The aim of the present study was to examine the 2-AG effect on myosin light chain (MLC) phosphorylation and to investigate the mechanisms involved. We demonstrated that 2-AG induced a rapid MLC phosphorylation, stimulating both the RhoA kinase (ROCK) and MLC kinase (MLCK) in a dose and time-dependent manner. In addition MLC phosphorylation was strengthened through the MLC phosphatase inhibition. MLC phosphatase inhibition was accomplished through the RhoA/ROCK and protein kinase C mediated phosphorylation of MLC phosphatase inhibiting subunits MYPT1 and CPI-17. The presence of CB1 receptor in human platelets and the involvement of CB1 receptor in MLC phosphorylation and MLC phosphatase inhibition was shown.  相似文献   

8.
The mammalian target of rapamycin (mTOR) is a central regulator of cell growth. mTOR exists in two functional complexes, mTORC1 and mTORC2. mTORC1 is rapamycin-sensitive, and results in phosphorylation of 4E-BP1 and S6K1. mTORC2 is proposed to regulate Akt Ser473 phosphorylation and be rapamycin-insensitive. mTORC2 consists of mTOR, mLST8, sin1, Protor/PRR5, and the rapamycin insensitive companion of mTOR (rictor). Here, we show that rapamycin regulates the phosphorylation of rictor. Rapamycin-mediated rictor dephosphorylation is time and concentration dependent, and occurs at physiologically relevant rapamycin concentrations. siRNA knockdown of mTOR also leads to rictor dephosphorylation, suggesting that rictor phosphorylation is mediated by mTOR or one of its downstream targets. Rictor phosphorylation induced by serum, insulin and insulin-like growth factor is blocked by rapamycin. Rictor dephosphorylation is not associated with dephosphorylation of Akt Ser473. Further work is needed to better characterize the mechanism of rictor regulation and its role in rapamycin-mediated growth inhibition.  相似文献   

9.
Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORC1) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR). However, it is unknown whether and how mTOR regulates IGF-IR and InsR themselves. Here we show that mTOR possesses unexpected tyrosine kinase activity and activates IGF-IR/InsR. Rapamycin induces the tyrosine phosphorylation and activation of IGF-IR/InsR, which is largely dependent on rictor and mTOR. Moreover, mTORC2 promotes ligand-induced activation of IGF-IR/InsR. IGF- and insulin-induced IGF-IR/InsR phosphorylation is significantly compromised in rictor-null cells. Insulin receptor substrate (IRS) directly interacts with SIN1 thereby recruiting mTORC2 to IGF-IR/InsR and promoting rapamycin- or ligand-induced phosphorylation of IGF-IR/InsR. mTOR exhibits tyrosine kinase activity towards the general tyrosine kinase substrate poly(Glu-Tyr) and IGF-IR/InsR. Both recombinant mTOR and immunoprecipitated mTORC2 phosphorylate IGF-IR and InsR on Tyr1131/1136 and Tyr1146/1151, respectively. These effects are independent of the intrinsic kinase activity of IGF-IR/InsR, as determined by assays on kinase-dead IGF-IR/InsR mutants. While both rictor and mTOR immunoprecitates from rictor+/+ MCF-10A cells exhibit tyrosine kinase activity towards IGF-IR and InsR, mTOR immunoprecipitates from rictor−/− MCF-10A cells do not induce IGF-IR and InsR phosphorylation. Phosphorylation-deficient mutation of residue Tyr1131 in IGF-IR or Tyr1146 in InsR abrogates the activation of IGF-IR/InsR by mTOR. Finally, overexpression of rictor promotes IGF-induced cell proliferation. Our work identifies mTOR as a dual-specificity kinase and clarifies how mTORC2 promotes IGF-IR/InsR activation.  相似文献   

10.
11.
Phospholipase D (PLD) is implicated in a variety of physiological processes that reveal it to be a member of the signal transducing phospholipases. We found that PLD1 is activated when basic fibroblast growth factor (bFGF) stimulates neurite outgrowth of an immortalized hippocampal cell line (H19-7). Overexpression of PLD1 in H19-7 cells dramatically elongated bFGF-induced neurite outgrowth and increased PLD activity. Transfection of DN-rPLD1 blocked bFGF-induced PLD activation and completely inhibited neurite outgrowth induced by bFGF, suggesting that PLD1 activation is important in bFGF-induced neurite outgrowth of H19-7 cells. PLD activation and neurite outgrowth induced by bFGF was dependent on phospholipase C gamma (PLC-gamma) and Ca2+, but not protein kinase C (PKC). Furthermore, inhibition of Src and Ras partially blocked bFGF-induced PLD activation and neurite outgrowth, respectively. Coinhibition of Src and Ras completely blocked bFGF-induced PLD activation, suggesting that Src and Ras independently regulate PLD1 activation. Interestingly, bFGF-induced PLD activation and neurite outgrowth did not require ERK1/2 activated by Ras. Taken together, this study demonstrates that bFGF activates PLD1 through PLC-gamma activation, which leads to neurite outgrowth in H19-7 cells. Furthermore, our results show that PLD1 activation by bFGF is regulated by Src and Ras independently.  相似文献   

12.
We previously reported that prostaglandin F2alpha (PGF2alpha) induces phosphoinositide hydrolysis by phospholipase C and phosphatidylcholine hydrolysis by phospholipase D through heterotrimeric GTP-binding protein, resulting in the activation of protein kinase C (PKC) in osteoblast-like MC3T3-E1 cells and that PGF2alpha stimulates the synthesis of interleukin-6 (IL-6) via PKC-dependent p44/p42 mitogen-activated protein (MAP) kinase activation. In the present study, we investigated whether zinc affects the PGF2alpha-induced IL-6 synthesis in these cells. Zinc complex of l-carnosine (l-CAZ) dose-dependently suppressed the PGF2alpha-stimulated IL-6 synthesis. In addition, zinc alone reduced the IL-6 synthesis. L-CAZ suppressed the PGF2alpha-induced p44/p42 MAP kinase phosphorylation. However, the p44/p42 MAP kinase phosphorylation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), a direct activator of PKC, or NaF, a direct activator of GTP-binding protein, was not affected by l-CAZ. l-CAZ reduced the PGF2alpha-stimulated formation of inositol phosphates and choline. However, l-CAZ did not affect the formation of inositol phosphates or choline induced by NaF. These results strongly suggest that zinc reduces PGF2alpha-induced IL-6 synthesis via suppression of phosphoinositide-hydrolyzing phospholipase C and phosphatidylcholine-hydrolyzing phospholipase D in osteoblasts.  相似文献   

13.
It has been long recognised that activation of toll‐like receptors (TLRs) induces autophagy to restrict intracellular bacterial growth. However, the mechanisms of TLR‐induced autophagy are incompletely understood. Salmonella Typhimurium is an intracellular pathogen that causes food poisoning and gastroenteritis in humans. Whether TLR activation contributes to S. Typhimurium‐induced autophagy has not been investigated. Here, we report that S. Typhimurium and TLRs shared a common pathway to induce autophagy in macrophages. We first showed that S. Typhimurium‐induced autophagy in a RAW264.7 murine macrophage cell line was mediated by the AMP‐activated protein kinase (AMPK) through activation of the TGF‐β‐activated kinase (TAK1), a kinase activated by multiple TLRs. AMPK activation led to increased phosphorylation of Unc‐51‐like autophagy activating kinase (ULK1) at S317 and S555. ULK1 phosphorylation at these two sites in S. Typhimurium‐infected macrophages overrode the inhibitory effect of mTOR on ULK1 activity due to mTOR‐mediated ULK1 phosphorylation at S757. Lipopolysaccharide (LPS), flagellin, and CpG oligodeoxynucleotide, which activate TLR4, TLR5, and TLR9, respectively, increased TAK1 and AMPK phosphorylation and induced autophagy in RAW264.7 cells and in bone marrow‐derived macrophages. However, LPS was unable to induce TAK1 and AMPK phosphorylation and autophagy in TLR4‐deficient macrophages. TAK1 and AMPK‐specific inhibitors blocked S. Typhimurium‐induced autophagy and xenophagy and increased the bacterial growth in RAW264.7 cells. These observations collectively suggest that activation of the TAK1–AMPK axis through TLRs is essential for S. Typhimurium‐induced autophagy and that TLR signalling cross‐activates the autophagic pathway to clear intracellular bacteria.  相似文献   

14.
TBK1 responds to microbes to initiate cellular responses critical for host innate immune defense. We found previously that TBK1 phosphorylates mTOR (mechanistic target of rapamycin) on S2159 to increase mTOR complex 1 (mTORC1) signaling in response to the growth factor EGF and the viral dsRNA mimetic poly(I:C). mTORC1 and the less well studied mTORC2 respond to diverse cues to control cellular metabolism, proliferation, and survival. Although TBK1 has been linked to Akt phosphorylation, a direct relationship between TBK1 and mTORC2, an Akt kinase, has not been described. By studying MEFs lacking TBK1, as well as MEFs, macrophages, and mice bearing an Mtor S2159A knock-in allele (MtorA/A) using in vitro kinase assays and cell-based approaches, we demonstrate here that TBK1 activates mTOR complex 2 (mTORC2) directly to increase Akt phosphorylation. We find that TBK1 and mTOR S2159 phosphorylation promotes mTOR-dependent phosphorylation of Akt in response to several growth factors and poly(I:C). Mechanistically, TBK1 coimmunoprecipitates with mTORC2 and phosphorylates mTOR S2159 within mTORC2 in cells. Kinase assays demonstrate that TBK1 and mTOR S2159 phosphorylation increase mTORC2 intrinsic catalytic activity. Growth factors failed to activate TBK1 or increase mTOR S2159 phosphorylation in MEFs. Thus, basal TBK1 activity cooperates with growth factors in parallel to increase mTORC2 (and mTORC1) signaling. Collectively, these results reveal cross talk between TBK1 and mTOR, key regulatory nodes within two major signaling networks. As TBK1 and mTOR contribute to tumorigenesis and metabolic disorders, these kinases may work together in a direct manner in a variety of physiological and pathological settings.  相似文献   

15.
Muscarinic receptors subserve many functions in both peripheral and central nervous systems. Some of these processes depend on increases in protein synthesis, which may be achieved by activation of mammalian target of rapamycin (mTOR), a kinase that regulates protein translation capacity. Here, we examined the regulation of mTOR-dependent signaling pathways by muscarinic receptors in SK-N-SH human neuroblastoma cells, and in human embryonic kidney (HEK) cell lines transfected with individual muscarinic receptor subtypes. In SK-N-SH cells, the acetylcholine analog carbachol stimulated phosphorylation of the ribosomal S6 protein, a downstream target of mTOR. The sensitivity of the response to subtype-selective muscarinic receptor antagonists indicated that it was mediated by M3 receptors. Carbachol-evoked S6 phosphorylation was blocked by the mTOR inhibitor rapamycin, but was independent of phosphoinositide 3-kinase activation. The response was significantly reduced by the mitogen-activated protein kinase kinase (MEK) inhibitor U0126, which also inhibited carbachol-evoked S6 phosphorylation in HEK cells expressing M2 receptors, but was ineffective in M3 receptor-expressing HEK cells, although carbachol activated MAPK in both transfected lines. The p90 ribosomal S6 kinase has been implicated in mTOR regulation by phorbol esters, but was not activated by carbachol in any of the cell lines tested. The protein kinase C inhibitor bisindolylmaleimide I reduced carbachol-stimulated S6 phosphorylation in SK-N-SH cells, and in HEK cells expressing M3 receptors, but not in HEK cells expressing M2 receptors. The results demonstrate that multiple muscarinic receptor subtypes regulate mTOR, and that both MAPK-dependent and -independent mechanisms may mediate the response in a cell context-specific manner.  相似文献   

16.
Colorectal cancer is a major contributor of cancer-related mortality. The mammalian target or rapamycin (mTOR) signaling is frequently hyper-activated in colorectal cancers, promoting cancer progression and chemo-resistance. In the current study, we investigated the anti-colorectal cancer effect of a novel mTOR complex 1 (mTORC1) and mTORC2 dual inhibitor: AZD-2014. In cultured colorectal cancer cell lines, AZD-2014 significantly inhibited cancer cell growth without inducing significant cell apoptosis. AZD-2014 blocked activation of both mTORC1 (S6K and S6 phosphorylation) and mTORC2 (Akt Ser 473 phosphorylation), and activated autophagy in colorectal cancer cells. Meanwhile, autophagy inhibition by 3-methyaldenine (3-MA) and hydroxychloroquine, as well as by siRNA knocking down of Beclin-1 or ATG-7, inhibited AZD-2014-induced cytotoxicity, while the apoptosis inhibitor had no rescue effect. In vivo, AZD-2014 oral administration significantly inhibited the growth of HT-29 cell xenograft in SCID mice, and the mice survival was dramatically improved. At the same time, in xenografted tumors administrated with AZD-2014, the activation of mTORC1 and mTORC2 were largely inhibited, and autophagic markers were significantly increased. Thus, AZD-2014 inhibits colorectal cancer cell growth both in vivo and in vitro. Our results suggest that AZD-2014 may be further investigated for colorectal cancer therapy in clinical trials.  相似文献   

17.
The mammalian target of rapamycin (mTOR) which is part of two functionally distinct complexes, mTORC1 and mTORC2, plays an important role in vascular endothelial cells. Indeed, the inhibition of mTOR with an allosteric inhibitor such as rapamycin reduces the growth of endothelial cell in vitro and inhibits angiogenesis in vivo. Recent studies have shown that blocking mTOR results in the activation of other prosurvival signals such as Akt or MAPK which counteract the growth inhibitory properties of mTOR inhibitors. However, little is known about the interactions between mTOR and MAPK in endothelial cells and their relevance to angiogenesis. Here we found that blocking mTOR with ATP-competitive inhibitors of mTOR or with rapamycin induced the activation of the mitogen-activated protein kinase (MAPK) in endothelial cells. Downregulation of mTORC1 but not mTORC2 had similar effects showing that the inhibition of mTORC1 is responsible for the activation of MAPK. Treatment of endothelial cells with mTOR inhibitors in combination with MAPK inhibitors reduced endothelial cell survival, proliferation, migration and tube formation more significantly than either inhibition alone. Similarly, in a tumor xenograft model, the anti-angiogenic efficacy of mTOR inhibitors was enhanced by the pharmacological blockade of MAPK. Taken together these results show that blocking mTORC1 in endothelial cells activates MAPK and that a combined inhibition of MAPK and mTOR has additive anti-angiogenic effects. They also provide a rationale to target both mTOR and MAPK simultaneously in anti-angiogenic treatment.  相似文献   

18.
Skeletal muscle in the neonate grows at a rapid rate due in part to an enhanced sensitivity to the postprandial rise in amino acids, particularly leucine. To elucidate the molecular mechanism by which leucine stimulates protein synthesis in neonatal muscle, overnight-fasted 7-day-old piglets were treated with rapamycin [an inhibitor of mammalian target of rapamycin (mTOR) complex (mTORC)1] for 1 h and then infused with leucine for 1 h. Fractional rates of protein synthesis and activation of signaling components that lead to mRNA translation were determined in skeletal muscle. Rapamycin completely blocked leucine-induced muscle protein synthesis. Rapamycin markedly reduced raptor-mTOR association, an indicator of mTORC1 activation. Rapamycin blocked the leucine-induced phosphorylation of mTOR, S6 kinase 1 (S6K1), and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1) and formation of the eIF4E.eIF4G complex and increased eIF4E.4E-BP1 complex abundance. Rapamycin had no effect on the association of mTOR with rictor, a crucial component for mTORC2 activation, or G protein beta-subunit-like protein (GbetaL), a component of mTORC1 and mTORC2. Neither leucine nor rapamycin affected the phosphorylation of AMP-activated protein kinase (AMPK), PKB, or tuberous sclerosis complex (TSC)2, signaling components that reside upstream of mTOR. Eukaryotic elongation factor (eEF)2 phosphorylation was not affected by leucine or rapamycin, although current dogma indicates that eEF2 phosphorylation is mTOR dependent. Together, these in vivo data suggest that leucine stimulates muscle protein synthesis in neonates by enhancing mTORC1 activation and its downstream effectors.  相似文献   

19.
Inactivation of PI 3-kinase (PI3K) signalling is critical for tumour suppression by PTEN. This is thought to be a unidirectional relationship in which PTEN degrades the lipids produced by PI3K, thus controlling cell proliferation, survival and migration. We now show that this relationship is in fact bidirectional, whereby PI3K reciprocally controls PTEN. We report that the p110delta PI3K negatively regulates PTEN, through a pathway involving inhibition of RhoA. Inactivation of p110delta in macrophages led to reduced Akt and Rac1 activation, but paradoxically to increased RhoA and PTEN activity. Partial inactivation of p190RhoGAP and a reduced binding of cytoplasmic RhoA to the cyclin-dependent kinase inhibitor p27 both contributed to the increased RhoA-GTP levels upon p110delta inactivation. Pharmacological inhibition of ROCK, a downstream effector kinase of RhoA, restored all signalling and functional defects of p110delta inactivation, including Akt phosphorylation, chemotaxis and proliferation. This work identifies the RhoA/ROCK pathway as a major target of p110delta-mediated PI3K signalling, and establishes for the first time that PI3K controls itself, via a feedback loop involving PTEN.  相似文献   

20.
Rheb is a homolog of Ras GTPase that regulates cell growth, proliferation, and regeneration via mammalian target of rapamycin (mTOR). Because of the well established potential of activated Ras to promote survival, we sought to investigate the ability of Rheb signaling to phenocopy Ras. We found that overexpression of lipid-anchored Rheb enhanced the apoptotic effects induced by UV light, TNFα, or tunicamycin in an mTOR complex 1 (mTORC1)-dependent manner. Knocking down endogenous Rheb or applying rapamycin led to partial protection, identifying Rheb as a mediator of cell death. Ras and c-Raf kinase opposed the apoptotic effects induced by UV light or TNFα but did not prevent Rheb-mediated apoptosis. To gain structural insight into the signaling mechanisms, we determined the structure of Rheb-GDP by NMR. The complex adopts the typical canonical fold of RasGTPases and displays the characteristic GDP-dependent picosecond to nanosecond backbone dynamics of the switch I and switch II regions. NMR revealed Ras effector-like binding of activated Rheb to the c-Raf-Ras-binding domain (RBD), but the affinity was 1000-fold lower than the Ras/RBD interaction, suggesting a lack of functional interaction. shRNA-mediated knockdown of apoptosis signal-regulating kinase 1 (ASK-1) strongly reduced UV or TNFα-induced apoptosis and suppressed enhancement by Rheb overexpression. In conclusion, Rheb-mTOR activation not only promotes normal cell growth but also enhances apoptosis in response to diverse toxic stimuli via an ASK-1-mediated mechanism. Pharmacological regulation of the Rheb/mTORC1 pathway using rapamycin should take the presence of cellular stress into consideration, as this may have clinical implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号