首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Suppression of dendritic cell (DC) function in HIV-1 infection is thought to contribute to inhibition of immune responses and disease progression, but the mechanism of this suppression remains undetermined. Using the rhesus macaque model, we show B7-H1 (programmed death [PD]-L1) is expressed on lymphoid and mucosal DCs (both myeloid DCs and plasmacytoid DCs), and its expression significantly increases after SIV infection. Meanwhile, its receptor, PD-1, is upregulated on T cells in both peripheral and mucosal tissues and maintained at high levels on SIV-specific CD8(+) T cell clones in chronic infection. However, both B7-H1 and PD-1 expression in SIV controllers was similar to that of controls. Expression of B7-H1 on both peripheral myeloid DCs and plasmacytoid DCs positively correlated with levels of PD-1 on circulating CD4(+) and CD8(+) T cells, viremia, and declining peripheral CD4(+) T cell levels in SIV-infected macaques. Importantly, blocking DC B7-H1 interaction with PD-1(+) T cells could restore SIV-specific CD4(+) and CD8(+) T cell function as evidenced by increased cytokine secretion and proliferative capacity. Combined, the results indicate that interaction of B7-H1-PD-1 between APCs and T cells correlates with impairment of CD4(+) Th cells and CTL responses in vivo, and all are associated with disease progression in SIV infection. Blockade of this pathway may have therapeutic implications for HIV-infected patients.  相似文献   

3.
Cytotoxic CD8+ T Lymphocytes (CTL) efficiently control acute virus infections but can become exhausted when a chronic infection develops. Signaling of the inhibitory receptor PD-1 is an important mechanism for the development of virus-specific CD8+ T cell dysfunction. However, it has recently been shown that during the initial phase of infection virus-specific CD8+ T cells express high levels of PD-1, but are fully competent in producing cytokines and killing virus-infected target cells. To better understand the role of the PD-1 signaling pathway in CD8+ T cell cytotoxicity during acute viral infections we analyzed the expression of the ligand on retrovirus-infected cells targeted by CTLs. We observed increased levels of PD-L1 expression after infection of cells with the murine Friend retrovirus (FV) or with HIV. In FV infected mice, virus-specific CTLs efficiently eliminated infected target cells that expressed low levels of PD-L1 or that were deficient for PD-L1 but the population of PD-L1high cells escaped elimination and formed a reservoir for chronic FV replication. Infected cells with high PD-L1 expression mediated a negative feedback on CD8+ T cells and inhibited their expansion and cytotoxic functions. These findings provide evidence for a novel immune escape mechanism during acute retroviral infection based on PD-L1 expression levels on virus infected target cells.  相似文献   

4.
Attrition of heterologous virus-specific CD8(+) T cells has been demonstrated in murine viral infection; however, little is known regarding this phenomenon in human viral infections. In this study, we observed that CMV-specific CD8(+) T cells displayed numerical decline and functional impairment in the early phase of acute infection, whereas programmed death-1 (PD-1) expression was significantly up-regulated by these CMV-specific CD8(+) T cells. This early PD-1 up-regulation was found to be closely associated with the increased apoptotic sensitivity of CMV-specific CD8(+) T cells. The in vitro addition of anti-PD-1 further enhanced the spontaneous apoptosis of CMV-specific CD8(+) T cells; however, blockade of the PD-1-mediated pathway with anti-PD-L1 significantly restored the CMV-specific CD8(+) T cell proliferation and IFN-gamma production. Thus, PD-1 plays a crucial role in the attrition of CMV-specific CD8(+) T cells in acute hepatitis B virus infection, which in turn, influences the preexisting homeostatic virus-specific CD8(+) T cell pool.  相似文献   

5.
The T cell response possesses a number of inhibitory receptors to regulate the extent of the antiviral response and prevent immune pathology. These receptors are generally transiently upregulated during an effector response and then downregulated during memory. Some inhibitory receptors, such as programmed death 1 (PD-1) and LAG-3, were shown to be aberrantly upregulated during memory to chronic lymphocytic choriomeningitis virus infection, limiting functional capabilities. However, little is known about the impact of inhibitory receptors on memory development during a normal CD8 T cell response to acute virus infection. Our previous data showed that PD-1 is aberrantly upregulated during a secondary response by memory CD8 T cells that were generated without CD4 T cell help. Therefore, we examined the role of PD-1 in memory differentiation during acute vaccinia virus infection in intact mice. In the absence of PD-1, the primary and memory CD8 T cell responses were enhanced. Moreover, there were distinct phenotypic and functional changes in the memory PD-1(-/-) CD8 T cells. Higher levels of CD62L, CD27, and CCR7 were detected; cells produced more IL-2 and made an enhanced secondary response. These changes indicate a skewing of the memory population toward the central memory phenotype in the absence of PD-1 signaling.  相似文献   

6.
Functional impairment of HIV-specific CD4(+) T cells during chronic HIV infection is closely linked to viral replication and thought to be due to T cell exhaustion. Programmed death 1 (PD-1) has been linked to T cell dysfunction in chronic viral infections, and blockade of the PD-1 pathway restores HIV-specific CD4(+) and CD8(+) T cell function in HIV infection. This study extends those findings by directly examining PD-1 expression on virus-specific CD4(+) T cells. To investigate the role of PD-1 in HIV-associated CD4(+) T cell dysfunction, we measured PD-1 expression on blood and lymph node T cells from HIV-infected subjects with chronic disease. PD-1 expression was significantly higher on IFN-gamma-producing HIV-specific CD4(+) T cells compared with total or CMV-specific CD4(+) T cells in untreated HIV-infected subjects (p = 0.0001 and p < 0.0001, respectively). PD-1 expression on HIV-specific CD4(+) T cells from subjects receiving antiretroviral therapy was significantly reduced (p = 0.007), and there was a direct correlation between PD-1 expression on HIV-specific CD4(+) T cells and plasma viral load (r = 0.71; p = 0.005). PD-1 expression was significantly higher on HIV-specific T cells in the lymph node, the main site of HIV replication, compared with those in the blood (p = 0.0078). Thus, PD-1 expression on HIV-specific CD4(+) T cells is driven by persistent HIV replication, providing a potential target for enhancing the functional capacity of HIV-specific CD4(+) T cells.  相似文献   

7.
The impaired function of CD8(+) T cells is characteristic of hepatitis C virus (HCV) persistent infection. HCV core protein has been reported to inhibit CD8(+) T cell responses. To determine the mechanism of the HCV core in suppressing Ag-specific CD8(+) T cell responses, we generated a transgenic mouse, core(+) mice, where the expression of core protein is directed to the liver using the albumin promoter. Using a recombinant adenovirus to deliver Ag, we demonstrated that core(+) mice failed to clear adenovirus-LacZ (Ad-LacZ) infection in the liver. The effector function of LacZ-specific CD8(+) T cells was particularly impaired in the livers of core(+) mice, with suppression of IFN-gamma, TNF-alpha, and granzyme B production by CD8(+) T cells. In addition, the impaired CD8(+) T cell responses in core(+) mice were accompanied by the enhanced expression of the inhibitory receptor programmed death-1 (PD-1) by LacZ-specific CD8(+) T cells and its ligand B7-H1 on liver dendritic cells following Ad-LacZ infection. Importantly, blockade of the PD-1/B7-H1 inhibitory pathway (using a B7-H1 blocking antibody) in core(+) mice enhanced effector function of CD8(+) T cells and cleared Ad-LacZ-infection as compared with that in mice treated with control Ab. This suggests that the regulation of the PD-1/B7-H1 inhibitory pathway is crucial for HCV core-mediated impaired T cell responses and viral persistence in the liver. This also suggests that manipulation of the PD-1/B7-H1 pathway may be a potential immunotherapy to enhance effector T cell responses during persistent HCV infection.  相似文献   

8.
The number of virus-specific CD8 T cells increases substantially during an acute infection. Up to 90% of CD8 T cells are virus specific following lymphocytic choriomeningitis virus (LCMV) infection. In contrast, studies identifying virus-specific CD4 T cell epitopes have indicated that CD4 T cells often recognize a broader array of Ags than CD8 T cells, consequently making it difficult to accurately quantify the total magnitude of pathogen-specific CD4 T cell responses. In this study, we show that CD4 T cells become CD11a(hi)CD49d(+) after LCMV infection and retain this expression pattern into memory. During the effector phase, all the LCMV-specific IFN-γ(+) CD4 T cells display a CD11a(hi)CD49d(+) cell surface expression phenotype. In addition, only memory CD11a(hi)CD49d(+) CD4 T cells make IFN-γ after stimulation. Furthermore, upon secondary LCMV challenge, only CD11a(hi)CD49d(+) memory CD4 T cells from LCMV-immune mice undergo proliferative expansion, demonstrating that CD11a(hi)CD49d(+) CD4 T cells are truly Ag specific. Using the combination of CD11a and CD49d, we demonstrate that up to 50% of the CD4 T cells are virus specific during the peak of the LCMV response. Our results indicate that the magnitude of the virus-specific CD4 T cell response is much greater than previously recognized.  相似文献   

9.
10.
HIV/SIV infections induce chronic immune activation with remodeling of lymphoid architecture and hypergammaglobulinemia, although the mechanisms leading to such symptoms remain to be fully elucidated. Moreover, lymph nodes have been highlighted as a predilection site for SIV escape in vivo. Following 20 rhesus macaques infected with SIVmac239 as they progress from pre-infection to acute and chronic infection, we document for the first time, to our knowledge, the local dynamics of T follicular helper (T(FH)) cells and B cells in situ. Progression of SIV infection was accompanied by increased numbers of well-delineated follicles containing germinal centers (GCs) and T(FH) cells with a progressive increase in the density of programmed death-1 (PD-1) expression in lymph nodes. The rise in PD-1(+) T(FH) cells was followed by a substantial accumulation of Ki67(+) B cells within GCs. However, unlike in blood, major increases in the frequency of CD27(+) memory B cells were observed in lymph nodes, indicating increased turnover of these cells, correlated with increases in total and SIV specific Ab levels. Of importance, compared with T cell zones, GCs seemed to exclude CD8(+) T cells while harboring increasing numbers of CD4(+) T cells, many of which are positive for SIVgag, providing an environment particularly beneficial for virus replication and reservoirs. Our data highlight for the first time, to our knowledge, important spatial interactions of GC cell subsets during SIV infection, the capacity of lymphoid tissues to maintain stable relative levels of circulating B cell subsets, and a potential mechanism for viral reservoirs within GCs during SIV infection.  相似文献   

11.
The engagement of programmed death 1 (PD-1) to its ligands, PD-L1 and PD-L2, inhibits proliferation and cytokine production mediated by antibodies to CD3 (refs. 5,6,7). Blocking the PD-1-PD-L1 pathway in mice chronically infected with lymphocytic choriomeningitis virus restores the capacity of exhausted CD8(+) T cells to undergo proliferation, cytokine production and cytotoxic activity and, consequently, results in reduced viral load. During chronic HIV infection, HIV-specific CD8(+) T cells are functionally impaired, showing a reduced capacity to produce cytokines and effector molecules as well as an impaired capacity to proliferate. Here, we found that PD-1 was upregulated on HIV-specific CD8(+) T cells; PD-1 expression levels were significantly correlated both with viral load and with the reduced capacity for cytokine production and proliferation of HIV-specific CD8(+) T cells. Notably, cytomegalovirus (CMV)-specific CD8(+) T cells from the same donors did not upregulate PD-1 and maintained the production of high levels of cytokines. Blocking PD-1 engagement to its ligand (PD-L1) enhanced the capacity of HIV-specific CD8(+) T cells to survive and proliferate and led to an increased production of cytokines and cytotoxic molecules in response to cognate antigen. The accumulation of HIV-specific dysfunctional CD8(+) T cells in the infected host could prevent the renewal of a functionally competent HIV-specific CD8(+) repertoire.  相似文献   

12.
Class I MHC-restricted, HSV-1-specific CD8(+) cytolytic T lymphocyte (CTL) function is rarely detected in lymphocytes isolated directly from the lymph node draining the site of infection. However, culture in vitro for 24 to 72 h in the absence of exogenous antigen results in the development of easily detectable levels of HSV-1-specific CTL effectors. The inability to detect virus-specific CTL in HSV-1-infected mice is not well understood. However, since the in vitro culture of HSV-1-immune lymphocytes results in the transition to CTL function, studies of the changes occurring to the CD8(+) T cell subpopulation may provide important insights into the development of virus-specific CTL. Therefore, the phenotypic changes taking place in the CD8(+) population of T cells from draining popliteal lymph nodes of HSV-1-infected C57BL/6 (B6) mice were investigated, focusing on changes in the expression of cell surface markers associated with T lymphocyte activation. The results demonstrate an increase in the percentage of CD8(+) T cells expressing the activation markers CD44 and CD25 in parallel with the acquisition of HSV-specific CTL effector function. Cytolytic function was found exclusively within the CD8(+) CD44(hi) CD25(hi) fraction of cells in culture, but, surprisingly, was not detectable in CD8(+) CD44(hi) CD25(lo) T cells. This suggested that the acquisition of high levels of the high-affinity IL-2 receptor was closely linked to cytolytic function and may define an important developmental stage in the transition from noncytolytic to cytolytic effector cell. In support of this, CD8(+) CD25(hi) T cells isolated from the regional lymph node exhibited direct ex vivo cytolytic function, indicating that cytolytic effector cells were present in the lymph node, but must emigrate rapidly after attaining this level of differentiation.  相似文献   

13.
CD103(+) dendritic cells (DCs) are the major conventional DC population in the intestinal lamina propria (LP). Our previous report showed that a small number of cells in the LP could be classified into four subsets based on the difference in CD11c/CD11b expression patterns: CD11c(hi)CD11b(lo) DCs, CD11c(hi)CD11b(hi) DCs, CD11c(int)CD11b(int) macrophages, and CD11c(int)CD11b(hi) eosinophils. The CD11c(hi)CD11b(hi) DCs, which are CD103(+), specifically express TLR5 and induce the differentiation of naive B cells into IgA(+) plasma cells. These DCs also mediate the differentiation of Ag-specific Th17 and Th1 cells in response to flagellin. We found that small intestine CD103(+) DCs of the LP (LPDCs) could be divided into a small subset of CD8α(+) cells and a larger subset of CD8α(-) cells. Flow cytometry analysis revealed that CD103(+)CD8α(+) and CD103(+)CD8α(-) LPDCs were equivalent to CD11c(hi)CD11b(lo) and CD11c(hi)CD11b(hi) subsets, respectively. We analyzed a novel subset of CD8α(+) LPDCs to elucidate their immunological function. CD103(+)CD8α(+) LPDCs expressed TLR3, TLR7, and TLR9 and produced IL-6 and IL-12p40, but not TNF-α, IL-10, or IL-23, following TLR ligand stimulation. CD103(+)CD8α(+) LPDCs did not express the gene encoding retinoic acid-converting enzyme Raldh2 and were not involved in T cell-independent IgA synthesis or Foxp3(+) regulatory T cell induction. Furthermore, CD103(+)CD8α(+) LPDCs induced Ag-specific IgG in serum, a Th1 response, and CTL activity in vivo. Accordingly, CD103(+)CD8α(+) LPDCs exhibit a different function from CD103(+)CD8α(-) LPDCs in active immunity. This is the first analysis, to our knowledge, of CD8α(+) DCs in the LP of the small intestine.  相似文献   

14.
Gastrointestinal helminth infections are extremely prevalent in many human populations and are associated with downmodulated immune responsiveness. In the experimental model system of Heligmosomoides polygyrus, a chronic infection establishes in mice, accompanied by a modulated Th2 response and increased regulatory T cell (Treg) activity. To determine if dendritic cell (DC) populations in the lymph nodes draining the intestine are responsible for the regulatory effects of chronic infection, we first identified a population of CD11c(lo) nonplasmacytoid DCs that expand after chronic H. polygyrus infection. The CD11c(lo) DCs are underrepresented in magnetic bead-sorted preparations and spared from deletion in CD11c-diptheria toxin receptor mice. After infection, CD11c(lo) DCs did not express CD8, CD103, PDCA, or Siglec-H and were poorly responsive to TLR stimuli. In DC/T cell cocultures, CD11c(lo) DCs from naive and H. polygyrus-infected mice could process and present protein Ag, but induced lower levels of Ag-specific CD4(+) T cell proliferation and effector cytokine production, and generated higher percentages of Foxp3(+) T cells in the presence of TGF-β. Treg generation was also dependent on retinoic acid receptor signaling. In vivo, depletion of CD11c(hi) DCs further favored the dominance of the CD11c(lo) DC phenotype. After CD11c(hi) DC depletion, effector responses were inhibited dramatically, but the expansion in Treg numbers after H. polygyrus infection was barely compromised, showing a significantly higher regulatory/effector CD4(+) T cell ratio compared with that of CD11c(hi) DC-intact animals. Thus, the proregulatory environment of chronic intestinal helminth infection is associated with the in vivo predominance of a newly defined phenotype of CD11c(lo) tolerogenic DCs.  相似文献   

15.

Background

Programmed Death-1 (PD-1) is an inhibitory member of the CD28 family of molecules expressed on CD8+ T cells in response to antigenic stimulation. To better understand the role of PD-1 in antiviral immunity we examined the expression of PD-1 on Epstein-Barr virus (EBV) epitope-specific CD8+ T cells during acute infectious mononucleosis (AIM) and convalescence.

Methodology/Principal Findings

Using flow cytometry, we observed higher frequencies of EBV-specific CD8+ T cells and higher intensity of PD-1 expression on EBV-specific CD8+ T cells during AIM than during convalescence. PD-1 expression during AIM directly correlated with viral load and with the subsequent degree of CD8+ T cell contraction in convalescence. Consistent differences in PD-1 expression were observed between CD8+ T cells with specificity for two different EBV lytic antigen epitopes. Similar differences were observed in the degree to which PD-1 was upregulated on these epitope-specific CD8+ T cells following peptide stimulation in vitro. EBV epitope-specific CD8+ T cell proliferative responses to peptide stimulation were diminished during AIM regardless of PD-1 expression and were unaffected by blocking PD-1 interactions with PD-L1. Significant variability in PD-1 expression was observed on EBV epitope-specific CD8+ T cell subsets defined by V-beta usage.

Conclusions/Significance

These observations suggest that PD-1 expression is not only dependent on the degree of antigen presentation, but also on undefined characteristics of the responding cell that segregate with epitope specificity and V-beta usage.  相似文献   

16.
It has recently been established that memory CD8(+) T cells induced by viral infection are maintained at unexpectedly high frequencies in the spleen. While it has been established that these memory cells are phenotypically heterogeneous, relatively little is known about the functional status of these cells. Here we investigated the proliferative potential of CD8(+) memory T cells induced by Sendai virus infection. High frequencies of CD8(+) T cells specific for both dominant and subdominant Sendai virus epitopes persisted for many weeks after primary infection, and these cells were heterogeneous with respect to CD62L expression (approximately 20% CD62L(hi) and 80% CD62L(lo)). Reactivation of these cells with the antigenic peptide in vitro induced strong proliferation of antigen-specific CD8(+) T cells. However, approximately 20% of the cells failed to proliferate in vitro in response to a cognate peptide but nevertheless differentiated into effector cells and acquired full cytotoxic potential. These cells also expressed high levels of CD62L (in marked contrast to the CD62L(lo) status of the proliferating cells in the culture). Direct isolation of CD62L(hi) and CD62L(lo) CD8(+) T cells from memory mice confirmed the correlation of this marker with proliferative potential. Taken together, these data demonstrate that Sendai virus infection induces high frequencies of memory CD8(+) T cells that are highly heterogeneous in terms of both their phenotype and their proliferative potential.  相似文献   

17.
The programmed death-1 (PD-1)/programmed death-1 ligand 1 (PD-L1) pathway regulates both stimulatory and inhibitory signals. In some conditions, PD-1/PD-L1 inhibits T and B cell activation, induces anergy, and reduces cytotoxicity in CD8(+) T cells. In other conditions, PD-l/PD-L1 has costimulatory effects on T cells. We recently showed that induction of suppressive CD8(+)Foxp3(+) T cells by immune tolerance of lupus-prone (New Zealand black × New Zealand white)F(1) (BWF(1)) mice with the anti-DNA Ig-based peptide pConsensus (pCons) is associated with significantly reduced PD-1 expression on those cells. In this study, we tested directly the role of PD-1 by administering in vivo neutralizing Ab to PD-1 to premorbid BWF(1) and healthy control mice. Anti-PD-1-treated mice were protected from the onset of lupus nephritis for 10 wk, with significantly improved survival. Although the numbers of T cells declined in aging control mice, they were maintained in anti-PD-1-treated mice, including CD8(+)Foxp3(+) T cells that suppressed syngeneic CD4(+)CD25(-) T cell proliferation and IFN-γ production, reduced production of IgG and anti-dsDNA IgG, induced apoptosis in syngeneic B cells, and increased IL-2 and TGF-β production. The administration of anti-PD-1 Ab to BWF(1) mice after induction of tolerance with pCons abrogated tolerance; mice developed autoantibodies and nephritis at the same time as control mice, being unable to induce CD8(+)Foxp3(+) T suppressor cells. These data suggest that tightly regulated PD-1 expression is essential for the maintenance of immune tolerance mediated by those CD8(+)Foxp3(+) T cells that suppress both T(h) cells and pathogenic B cells. PD-1 regulation could represent a target to preserve tolerance and prevent autoimmunity.  相似文献   

18.
A subset of CD44(hi)CD8(+) T cells isolated from C57BL/6/J (B6) mice, but not BALB/c/By/J (BALB/c) mice, rapidly secrete IFN-γ within 16 h of infection with Listeria monocytogenes. This Ag-independent response requires the presence of both IL-12 and IL-18. Previous studies showed that dendritic cells from B6 mice produced more Th1-type cytokines such as IL-12 than did those from BALB/c mice in response to L. monocytogenes infection. In this report, we demonstrate that the microenvironment in L. monocytogenes-infected BALB/c mice is sufficient to induce responsive B6 CD8(+) T cells to rapidly secrete IFN-γ. Furthermore, BALB/c CD8(+) T cells did not rapidly secrete IFN-γ even when they were exposed to high concentrations of IL-12 plus IL-18 in vitro. In the presence of IL-12 and IL-18, B6 CD44(hi)CD8(+) T cells upregulated expression of the receptor subunits for these cytokines more rapidly than did BALB/c T cells. In comparing particular subsets of memory phenotype CD8(+) T cells, we found that virtual memory cells, rather than true Ag-experienced cells, had the greatest level of impairment in BALB/c mice. These data suggest that the degree of cytokine-driven bystander activation of CD8(+) T cells that occurs during infection depends on both APCs and T cell-intrinsic properties that can vary among mouse strains.  相似文献   

19.
Mechanisms leading to the observed immune dysregulation in HIV-1 infection are not well understood. HIV-specific IL-10-positive CD8(+) T cells are increased in advanced HIV disease. We have previously reported that Gag-specific IL-10-positive CD8(+) T cells suppressed cytolysis. In this study we describe the suppressive effect of Nef-specific IL-10-positive CD8(+) T cells. Interestingly, simultaneous removal of both Gag- and Nef-specific IL-10-positive CD8(+) T cells led to higher HIV-specific cytolysis compared with the removal of Nef-specific IL-10-positive CD8(+) T cells alone. We also examined the level of programmed cell death-1 (PD-1) as a measure of immune dysfunction in association with IL-10-positive suppressor CD8(+) T cells. The level of PD-1 expression on CD107-positive effector CD8(+) T cells was significantly increased when IL-10-positive suppressor CD8(+) T cells were present (p < 0.05). Our results suggest that IL-10-positive suppressor CD8(+) T cells contribute to the immune dysfunction observed in advanced HIV infection and that the concomitant presence of multiple IL-10-positive CD8(+) T cell populations may have an additive suppressive effect.  相似文献   

20.
Two billion people worldwide are estimated to be latently infected with Mycobacterium tuberculosis (Mtb) and are at risk for developing active tuberculosis since Mtb can reactivate to cause TB disease in immune-compromised hosts. Individuals with latent Mtb infection (LTBI) and BCG-vaccinated individuals who are uninfected with Mtb, harbor antigen-specific memory CD4(+) T cells. However, the differences between long-lived memory CD4(+) T cells induced by latent Mtb infection (LTBI) versus BCG vaccination are unclear. In this study, we characterized the immune phenotype and functionality of antigen-specific memory CD4(+) T cells in healthy BCG-vaccinated individuals who were either infected (LTBI) or uninfected (BCG) with Mtb. Individuals were classified into LTBI and BCG groups based on IFN-γ ELISPOT using cell wall antigens and ESAT-6/CFP-10 peptides. We show that LTBI individuals harbored high frequencies of late-stage differentiated (CD45RA(-)CD27(-)) antigen-specific effector memory CD4(+) T cells that expressed PD-1. In contrast, BCG individuals had primarily early-stage (CD45RA(-)CD27(+)) cells with low PD-1 expression. CD27(+) and CD27(-) as well as PD-1(+) and PD-1(-) antigen-specific subsets were polyfunctional, suggesting that loss of CD27 expression and up-regulation of PD-1 did not compromise their capacity to produce IFN-γ, TNF-α and IL-2. PD-1 was preferentially expressed on CD27(-) antigen-specific CD4(+) T cells, indicating that PD-1 is associated with the stage of differentiation. Using statistical models, we determined that CD27 and PD-1 predicted LTBI versus BCG status in healthy individuals and distinguished LTBI individuals from those who had clinically resolved Mtb infection after anti-tuberculosis treatment. This study shows that CD4(+) memory responses induced by latent Mtb infection, BCG vaccination and clinically resolved Mtb infection are immunologically distinct. Our data suggest that differentiation into CD27(-)PD-1(+) subsets in LTBI is driven by Mtb antigenic stimulation in vivo and that CD27 and PD-1 have the potential to improve our ability to evaluate true LTBI status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号