首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a previous study of normal subjects exercising at sea level and simulated altitude, ventilation-perfusion (VA/Q) inequality and alveolar-end-capillary O2 diffusion limitation (DIFF) were found to increase on exercise at altitude, but at sea level the changes did not reach statistical significance. This paper reports additional measurements of VA/Q inequality and DIFF (at sea level and altitude) and also of pulmonary arterial pressure. This was to examine the hypothesis that VA/Q inequality is related to increased pulmonary arterial pressure. In a hypobaric chamber, eight normal subjects were exposed to barometric pressures of 752, 523, and 429 Torr (sea level, 10,000 ft, and 15,000 ft) in random order. At each altitude, inert and respiratory gas exchange and hemodynamic variables were studied at rest and during several levels of steady-state bicycle exercise. Multiple inert gas data from the previous and current studies were combined (after demonstrating no statistical difference between them) and showed increasing VA/Q inequality with sea level exercise (P = 0.02). Breathing 100% O2 did not reverse this increase. When O2 consumption exceeded about 2.7 1/min, evidence for DIFF at sea level was present (P = 0.01). VA/Q inequality and DIFF increased with exercise at altitude as found previously and was reversed by 100% O2 breathing. Indexes of VA/Q dispersion correlated well with mean pulmonary arterial pressure and also with minute ventilation. This study confirms the development of both VA/Q mismatch and DIFF in normal subjects during heavy exercise at sea level. However, the mechanism of increased VA/Q mismatch on exercise remains unclear due to the correlation with both ventilatory and circulatory variables and will require further study.  相似文献   

2.
Patients with idiopathic pulmonary fibrosis (IPF) usually develop hypoxemia and pulmonary hypertension when exercising. To what extent endothelium-derived vasodilating agents modify these changes is unknown. The study was aimed to investigate in patients with IPF whether exercise induces changes in plasma levels of endothelium-derived signaling mediators, and to assess the acute effects of inhaled nitric oxide (NO) on pulmonary hemodynamics and gas exchange, at rest and during exercise. We evaluated seven patients with IPF (6 men/1 woman; 57 ± 11 yr; forced vital capacity, 60 ± 13% predicted; carbon monoxide diffusing capacity, 52 ± 10% predicted). Levels of endothelin, 6-keto-prostaglandin-F(1α), thromboxane B(2), and nitrates were measured at rest and during submaximal exercise. Pulmonary hemodynamics and gas exchange, including ventilation-perfusion relationships, were assessed breathing ambient air and 40 ppm NO, both at rest and during submaximal exercise. The concentration of thromboxane B(2) increased during exercise (P = 0.046), whereas levels of other mediators did not change. The change in 6-keto-prostaglandin-F(1α) correlated with that of mean pulmonary arterial pressure (r = 0.94; P < 0.005). Inhaled NO reduced mean pulmonary arterial pressure at rest (-4.6 ± 2.1 mmHg) and during exercise (-11.7 ± 7.1 mmHg) (P = 0.001 and P = 0.004, respectively), without altering arterial oxygenation or ventilation-perfusion distributions in any of the study conditions. Alveolar-to-capillary oxygen diffusion limitation, which accounted for the decrease of arterial Po(2) during exercise, was not modified by NO administration. We conclude that, in IPF, some endothelium-derived signaling molecules may modulate the development of pulmonary hypertension during exercise, and that the administration of inhaled NO reduces pulmonary vascular resistance without disturbing gas exchange.  相似文献   

3.
An increased hematocrit could enhance peripheral O2 transport during exercise by improving arterial O2 content. Conversely, it could reduce maximal delivery of O2 by limiting cardiac output during exercise or by limiting the distribution of blood flow to peripheral capillaries with high O2 extractions. We studied O2 transport at rest and during graded treadmill exercise in splenectomized tracheostomized dogs at normal hematocrit (38 +/- 3%), and 48 h after transfusion of type-matched donor cells. This procedure increased hematocrit (60 +/- 3%) but also increased blood volume (P less than 0.05). Following transfusion, resting cardiac output (QT) and heart rate were not different. During exercise, QT was significantly lower at each level of O2 consumption (VO2) at high hematocrit (P less than 0.01). A reduction in QT was also seen during polycythemic exercise with hypoxemia produced by breathing 12 or 10% O2 in N2. Despite the reduction in QT, mixed venous PO2 was not lower at high hematocrit, and the increase in base deficit with VO2 was not different from control measurements. O2 delivery (QT X arterial content) was similar at each level of VO2 at both levels of hematocrit, during both normoxic and hypoxic studies. Both systemic and pulmonary arterial pressures were increased at rest after transfusion (P less than 0.05). However, pulmonary and systemic pressures were not higher than control during exercise at high hematocrit. We conclude that a hematocrit of 60% with increased blood volume is not associated with a cardiac limitation of O2 delivery, nor does it interfere with peripheral O2 extraction during exercise in the dog.  相似文献   

4.
Breathing was recorded via a pulsed ultrasonic flowmeter in 11 healthy subjects, at rest and during steady-state exercise (at 50% of their maximal O2 consumption) at both sea level (200 m) and simulated altitude (4,500 m in a hypobaric chamber). The pattern of breathing was quantified breath by breath in terms of classical respiratory variables (tidal volume and inspiratory and expiratory times), and the shape of the entire airflow profile was quantified by harmonic analysis. Statistical tests were used to compare the within-individual with the between-individual variations. In comparing the sea level vs. altitude rest (16% increase in ventilation) and sea level vs. altitude exercise (40% increase in ventilation) airflow profiles, we found a significantly greater resemblance within the individual than between individuals. Comparisons of sea level rest and exercise (295% increase in ventilation) and altitude rest and exercise (375% increase in ventilation) revealed no similarity within individuals. Despite airflow profile changes between rest and exercise, it is still possible to attest to a diversity of flow profile between individuals during exercise. Hypoxia at rest or during exercise does not alter the phenomenon of the individuality of breathing patterns.  相似文献   

5.
We determined the changes in fractal dimensions and spatial correlations of regional pulmonary blood flow with increasing exercise in race horses (n = 4) by using 15-microm fluorescent microspheres. Fluorescence was measured to quantitate regional blood to 1.3-cm(3) samples (n = 1,621-2,503). Perfusion distributions were characterized with fractal dimensions (a measure of spatial variability) and spatial correlations. On average, the fractal dimension decreased with exercise (trot 1.216 to gallop 1.173; P < 0. 05) despite a variable fractal dimension at rest. Spatial correlation of flow to neighboring pieces increased with exercise (trot 0.57 +/- 0.074 to gallop 0.73 +/- 0.051) and was inversely correlated with fractal dimension, indicating better spatial correlation as blood flow distribution becomes more uniform. This is the first study to document a change in fractal dimension as a result of increasing pulmonary blood flow. Spatial differences in response to vasoregulatory mediators may play a role in this phenomenon.  相似文献   

6.
Prostacyclin and nitric oxide (NO) are produced by the endothelium in response to physical forces such as shear stress. Consequently, both NO and prostacyclin may increase during exercise and contribute to metabolic vasodilation. Conversely, NO has been hypothesized to inhibit prostacyclin production. We therefore investigated the effect of cyclooxygenase (COX) inhibition on exercise-induced vasodilation of the porcine systemic, pulmonary, and coronary beds before and after inhibition of NO production. Swine were studied at rest and during treadmill exercise at 1-5 km/h, before and after COX inhibition with indomethacin (10 mg/kg iv), and in the absence and presence of NO synthase inhibition with N(omega)-nitro-l-arginine (l-NNA; 20 mg/kg iv). COX inhibition produced systemic vasoconstriction at rest, which waned during exercise. The systemic vasoconstriction by COX inhibition was enhanced after l-NNA, particularly at rest. In the coronary circulation, COX inhibition also resulted in vasoconstriction at rest and during exercise. However, vasoconstriction was not modified by pretreatment with l-NNA. In contrast, COX inhibition had no effect on the pulmonary circulation, either at rest or during exercise. Moreover, a prostanoid influence in the pulmonary circulation could not be detected after l-NNA. In conclusion, endogenous prostanoids contribute importantly to systemic and coronary tone in awake swine at rest but are not mandatory for exercise-induced vasodilation in these beds. Endogenous prostanoids are not mandatory for the regulation of pulmonary resistance vessel tone. Finally, NO blunts the contribution of prostanoids to vascular tone regulation in the systemic but not in the coronary and pulmonary beds.  相似文献   

7.
This study was designed to examine time-of-day effects on markers of cardiac functional capacity during a standard progressive cycle exercise test. Fourteen healthy, untrained young males (mean?±?SD: 17.9?±?0.7 yrs of age) performed identical maximal cycle tests in the morning (08:00-11:00?h) and late afternoon (16:00-19:00?h) in random order. Cardiac variables were measured at rest, submaximal exercise, and maximal exercise by standard echocardiographic techniques. No differences in morning and afternoon testing values at rest or during exercise were observed for oxygen uptake, heart rate, cardiac output, or markers of systolic and diastolic myocardial function. Values at peak exercise for Vo(2) at morning and afternoon testing were 3.20?±?0.49 and 3.24?±?0.55?L min(-1), respectively, for heart rate 190?±?11 and 188?±?15?bpm, and for cardiac output 19.5?±?2.8 and 19.8?±?3.5?L min(-1). Coefficients of variation for morning and afternoon values for these variables were similar to those previously published for test-retest reproducibility. This study failed to demonstrate evidence for significant time-of-day variation in Vo(2)max or cardiac function during standard progressive exercise testing in adolescent males.  相似文献   

8.
Pulmonary gas exchange in humans during exercise at sea level   总被引:3,自引:0,他引:3  
Previous studies have shown both worsening ventilation-perfusion (VA/Q) relationships and the development of diffusion limitation during exercise at simulated altitude and suggested that similar changes could occur even at sea level. We used the multiple-inert gas-elimination technique to further study gas exchange during exercise in healthy subjects at sea level. Mixed expired and arterial respiratory and inert gas tensions, cardiac output, heart rate, minute ventilation, respiratory rate, and blood temperature were recorded at rest and during steady-state exercise in the following order: rest, minimal exercise (75 W), heavy exercise (300 W), heavy exercise breathing 100% O2, repeat rest, moderate exercise (225 W), and light exercise (150 W). Alveolar-to-arterial O2 tension difference increased linearly with O2 uptake (VO2) (6.1 Torr X min-1 X 1(-1) VO2). This could be fully explained by measured VA/Q inequality at mean VO2 less than 2.5 l X min-1. At higher VO2, the increase in alveolar-to-arterial O2 tension difference could not be explained by VA/Q inequality alone, suggesting the development of diffusion limitation. VA/Q inequality increased significantly during exercise (mean log SD of perfusion increased from 0.28 +/- 0.13 at rest to 0.58 +/- 0.30 at VO2 = 4.0 l X min-1, P less than 0.01). This increase was not reversed by 100% O2 breathing and appeared to persist at least transiently following exercise. These results confirm and extend the earlier suggestions (8, 21) of increasing VA/Q inequality and O2 diffusion limitation during heavy exercise at sea level in normal subjects and demonstrate that these changes are independent of the order of performance of exercise.  相似文献   

9.
Aerobic exercise capacity is decreased at altitude because of combined decreases in arterial oxygenation and in cardiac output. Hypoxic pulmonary vasoconstriction could limit cardiac output in hypoxia. We tested the hypothesis that acetazolamide could improve exercise capacity at altitude by an increased arterial oxygenation and an inhibition of hypoxic pulmonary vasoconstriction. Resting and exercise pulmonary artery pressure (Ppa) and flow (Q) (Doppler echocardiography) and exercise capacity (cardiopulmonary exercise test) were determined at sea level, 10 days after arrival on the Bolivian altiplano, at Huayna Potosi (4,700 m), and again after the intake of 250 mg acetazolamide vs. a placebo three times a day for 24 h. Acetazolamide and placebo were administered double-blind and in a random sequence. Altitude shifted Ppa/Q plots to higher pressures and decreased maximum O(2) consumption ((.)Vo(2max)). Acetazolamide had no effect on Ppa/Q plots but increased arterial O(2) saturation at rest from 84 +/- 5 to 90 +/- 3% (P < 0.05) and at exercise from 79 +/- 6 to 83 +/- 4% (P < 0.05), and O(2) consumption at the anaerobic threshold (V-slope method) from 21 +/- 5 to 25 +/- 5 ml.min(-1).kg(-1) (P < 0.01). However, acetazolamide did not affect (.)Vo(2max) (from 31 +/- 6 to 29 +/- 7 ml.kg(-1).min(-1)), and the maximum respiratory exchange ratio decreased from 1.2 +/- 0.06 to 1.05 +/- 0.03 (P < 0.001). We conclude that acetazolamide does not affect maximum exercise capacity or pulmonary hemodynamics at high altitudes. Associated changes in the respiratory exchange ratio may be due to altered CO(2) production kinetics.  相似文献   

10.
Eight normal subjects were decompressed to barometric pressure (PB) = 240 Torr over 40 days. The ventilation-perfusion (VA/Q) distribution was estimated at rest and during exercise [up to 80-90% maximal O2 uptake (VO2 max)] by the multiple inert gas elimination technique at sea level and PB = 428, 347, 282, and 240 Torr. The dispersion of the blood flow distribution increased by 64% from rest to 281 W, at both sea level and at PB = 428 Torr (heaviest exercise 215 W). At PB = 347 Torr, the increase was 79% (rest to 159 W); at PB = 282 Torr, the increase was 112% (108 W); and at PB = 240 Torr, the increase was 9% (60 W). There was no significant correlation between the dispersion and cardiac output, ventilation, or pulmonary arterial wedge pressure, but there was a correlation between the dispersion and mean pulmonary arterial pressure (r = 0.49, P = 0.02). When abnormal, the VA/Q pattern generally had perfusion in lung units of zero or near zero VA/Q combined with units of normal VA/Q. Alveolar-end-capillary diffusion limitation of O2 uptake (VO2) was observed at VO2 greater than 3 l/min at sea level, greater than 1-2 l/min VO2 at PB = 428 and 347 Torr, and at higher altitudes, at VO2 less than or equal to 1 l/min. These results show variable but increasing VA/Q mismatch with long-term exposure to both altitude and exercise. The VA/Q pattern and relationship to pulmonary arterial pressure are both compatible with alveolar interstitial edema as the primary cause of inequality.  相似文献   

11.
The purpose of our study was to investigate the frequency of the third heart sound (S3) of athletes after exercise, and to determine whether the frequency and amplitude of S3 were related to cardiac function. The phonocardiogram exercise test (PCGET) was used in this study, and healthy volunteers consisting of 84 athletes (age 21.0±1.7 years; 62 males and 22 females) and 45 non-athletes (age 24.1±2.0 years; 33 males and 12 females) were enrolled. All subjects were healthy except one with a cardiac murmur without known cause. Immediately after exercise, S3 occurred in 21 athletes (25.0%) and 10 non-athletes (22.2%) during PCGET. There were very significant differences between pre-exercise and post-exercise in the frequency of S3 (P<0.01), and no significant difference between athletes and nonathletes (P>0.05). The prevalence of S3/S2≥1 was significantly (P<0.05) higher for the athlete group (47.1%) as compared to the non-athlete group (10%). Those results indicated that the emergence of S3 was an indicator of heart burden, and S3 after exercise in the athlete group was physiological. Our study showed that the amplitude of S3 had a very sensitive response to cardiac function reduction and S3/S2≥1 could eventually be used to assess cardiac fatigue states.  相似文献   

12.
Previous research has related the results of tests of maximum aerobic capacity to performance for endurance athletes. These results are often only able to predict the running velocity of races such as the marathon. This investigation sought to determine the absolute V[Combining Dot Above]O2 at various respiratory exchange ratio (RER) values (0.85, 0.90, 0.95, 1.0, 1.05, and 1.10) by using a third-order polynomial regression to model the physiological responses for V[Combining Dot Above]O2 and RER obtained from an assessment of maximum aerobic capacity. The V[Combining Dot Above]O2 determined was subsequently correlated to race performance. The participants in the study were selected from a population of National Collegiate Athletic Association Division 1 crosscountry runners (male n = 7, female n = 7, age 20.5 ± 0.9 years; height 170.3 ± 8.2 cm; weight 59.7 ± 8.7 kg; V[Combining Dot Above]O2max 57.0 ± 7.8 ml O2·kg·min). Third-order regression analysis resulted in strong curve fitting between the variables (r = 0.949 ± 0.03). Partial correlations (controlled for weight) were used to assess the relationship between oxygen consumption at the desired points of RER and race performance. The partial correlations revealed that the absolute oxygen consumptions at all RER points of interest were significantly correlated to race performance (r > 0.740, p < 0.01). There was a significant difference in the strength of the correlations for the points RER 0.95 (t = 2.68957, p = 0.01), 1.0 (t = 2.18516, p = 0.03), and 1.05 (t = 1.85668, p = 0.04) and the correlations found for RER 0.85. After converting the oxygen consumption at the RER points to estimated horizontal running speeds, only the estimate at RER 1.05 was not statistically different from the actual speed achieved in the culminating XC race. It can be suggested based upon these results that coaches of collegiate crosscountry runners who engage in metabolic testing of athletes examine the estimated running pace at RER 1.05 to gain an insight into a runner's potential.  相似文献   

13.
The effect of acute exercise was studied in a group of 42 clinically healthy young Standardbred trotters. These trotters had been divided into four groups according to their age. Their ages were from 1.5 to 3 years. Three jugular venous blood samples were collected via venipuncture from each horse. These samples were collected while (1) at rest, (2) after the end of the exercise and (3) 30 min after the end of the exercise. Exercise showed a significant increase in plasma leptin concentration (3.8 ± 0.31 at rest v. 4.3 ± 0.37 just after exercise and 4.4 ± 0.47 ng/ml after a 30-min rest; ANOVA P < 0.05). The difference between values obtained 30 min after exercise and at rest was significantly greater in 1.5-year-old horses than in those aged 2.5 years (+1.3 ± 0.43 v. +0.1 ± 0.15 ng/ml; ANOVA P < 0.05). The mean plasma leptin concentration was higher in fillies than in colts (4.9 ± 0.47 v. 3.5 ± 0.36 ng/ml; ANOVA P < 0.05). A positive correlation between the plasma concentrations of leptin and triacylglycerides measured just after exercise was detected (r = 0.65). The acute exercise significantly increased the plasma concentration of ghrelin that was measured just after exercise (1255 ± 55.9 v. 1127 ± 54.2 pg/ml; ANOVA P < 0.05). The exercise-induced age-related changes in the plasma ghrelin concentration were significantly lower in 2.5-year-old trotters than in 1.5-year olds. To sum up, the changes in plasma leptin and ghrelin concentrations during bouts of exertion tend to decrease with age and/or training of Standardbred foals.  相似文献   

14.
目的:探讨无创检测和评估心功能的新指标和新方法。方法:随机抽取81名体育系学生(买验组,n=81)和41名普通系学生(对照组,n=41),完成规定运动量的台阶运动后,通过采集心音信号,进行了心率,D/S比值以及S1/S2比值的对照研究。结果:在静息状态下,体育系学生的心率为66.2±8.7,D/S比值为2.04±0.33;晋通系学生的心率为70.8±8.0,D/S比值为1.82±0.27;在全运动量下,体育系学生的S1/S2比值为7.34±4.04;普通系学生的S1/S2比值为5.22±2.38。,结论:体育系学生比普通系学生具有较高水平的心脏储备:该方法可用来评估运动员与一般人的心脏储备,为运动员选拔以及一般人体质评估提供一种客观量化的新指标。  相似文献   

15.
To address the question of whether translocation of bacterial lipopolysaccharide (LPS) into the blood could be involved in the process of exercise-induced polymorphonuclear neutrophil (PMN) activation, 12 healthy male subjects who took part in a sprint triathlon (1.5 km river swim, 40 km bicycle race, 10 km road race) were studied. While there was no detectable amount of endotoxin in the blood samples drawn at rest, exercise was followed by the appearance of circulating endotoxin molecules at the end of competition in four subjects, and after one and 24 h recovery in three and seven athletes, respectively. The concentrations of plasma granulocyte myeloperoxidase ([MPO]), were significantly higher immediately after exercise and one hour later-than baseline values (P<0.001). This variable returned to pre-race levels the day after exercise, despite the presence of detectable amounts of LPS, at that time, in seven athletes. The absence of significant correlation (r=0.26; P=0.383) and temporal association between [MPO] and plasma endotoxin levels led us to conclude that endotoxaemia was not involved in the process of exercise-induced PMN degranulation observed in our subjects.  相似文献   

16.
To better understand the mechanisms contributing to improved exercise capacity with cardiac resynchronization therapy (CRT), we studied the effects of 6 mo of CRT on pulmonary O(2) uptake (Vo(2)) kinetics, exercise left ventricular (LV) function, and peak Vo(2) in 12 subjects (age: 56 ± 15 yr, peak Vo(2): 12.9 ± 3.2 ml·kg(-1)·min(-1), ejection fraction: 18 ± 3%) with heart failure. We hypothesized that CRT would speed Vo(2) kinetics due to an increase in stroke volume secondary to a reduction in LV end-systolic volume (ESV) and that the increase in peak Vo(2) would be related to an increase in cardiac output reserve. We found that Vo(2) kinetics were faster during the transition to moderate-intensity exercise after CRT (pre-CRT: 69 ± 21 s vs. post-CRT: 54 ± 17 s, P < 0.05). During moderate-intensity exercise, LV ESV reserve (exercise - resting) increased 9 ± 7 ml (vs. a 3 ± 9-ml decrease pre-CRT, P < 0.05), and steady-state stroke volume increased (pre-CRT: 42 ± 8 ml vs. post-CRT: 61 ± 12 ml, P < 0.05). LV end-diastolic volume did not change from rest to steady-state exercise post-CRT (P > 0.05). CRT improved heart rate, measured as a lower resting and steady-state exercise heart rate and as faster heart rate kinetics after CRT (pre-CRT: 89 ± 12 s vs. post-CRT: 69 ± 21 s, P < 0.05). For peak exercise, cardiac output reserve increased significantly post-CRT and was 22% higher at peak exercise post-CRT (both P < 0.05). The increase in cardiac output was due to both a significant increase in peak and reserve stroke volume and to a nonsignificant increase in heart rate reserve. Similar patterns in LV volumes as moderate-intensity exercise were observed at peak exercise. Cardiac output reserve was related to peak Vo(2) (r = 0.48, P < 0.05). These findings demonstrate the chronic CRT-mediated cardiac factors that contribute, in part, to the speeding in Vo(2) kinetics and increase in peak Vo(2) in clinically stable heart failure patients.  相似文献   

17.
The prevalence of a patent foramen ovale (PFO) is ~30%, and this source of right-to-left shunt could result in greater pulmonary gas exchange impairment at rest and during exercise. The aim of this work was to determine if individuals with an asymptomatic PFO (PFO+) have greater pulmonary gas exchange inefficiency at rest and during exercise than subjects without a PFO (PFO-). Separated by 1 h of rest, 8 PFO+ and 8 PFO- subjects performed two incremental cycle ergometer exercise tests to voluntary exhaustion while breathing either room air or hypoxic gas [fraction of inspired O(2) (FI(O(2))) = 0.12]. Using echocardiography, we detected small, intermittent boluses of saline contrast bubbles entering directly into the left atrium within 3 heart beats at rest and during both exercise conditions in PFO+. These findings suggest a qualitatively small intracardiac shunt at rest and during exercise in PFO+. The alveolar-to-arterial oxygen difference (AaDo(2)) was significantly (P < 0.05) different between PFO+ and PFO- in normoxia (5.9 ± 5.1 vs. 0.5 ± 3.5 mmHg) and hypoxia (10.1 ± 5.9 vs. 4.1 ± 3.1 mmHg) at rest, but not during exercise. However, arterial oxygen saturation was significantly different between PFO+ and PFO- at peak exercise in normoxia (94.3 ± 0.9 vs. 95.8 ± 1.0%) as a result of a significant difference in esophageal temperature (38.4 ± 0.3 vs. 38.0 ± 0.3°C). An asymptomatic PFO contributes to pulmonary gas exchange inefficiency at rest but not during exercise in healthy humans and therefore does not explain intersubject variability in the AaDO(2) at maximal exercise.  相似文献   

18.

Objective

To compare the acute effects of a cycling intervention on carotid arterial hemodynamics between basketball athletes and sedentary controls.

Methods

Ten young long-term trained male basketball athletes (BA) and nine age-matched male sedentary controls (SC) successively underwent four bouts of exercise on a bicycle ergometer at the same workload. Hemodynamic variables at right common carotid artery were determined at rest and immediately following each bout of exercise. An ANCOVA was used to compare differences between the BA and SC groups at rest and immediately following the cycling intervention. The repeated ANOVA was used to assess differences between baseline and each bout of exercise within the BA or SC group.

Results

In both groups, carotid hemodynamic variables showed significant differences at rest and immediately after the cycling intervention. At rest, carotid arterial stiffness was significantly decreased and carotid arterial diameter was significantly increased in the BA group as compared to the SC group. Immediately following the cycling intervention, carotid arterial stiffness showed no obvious changes in the BA group but significantly increased in the SC group. It is worth noting that while arterial stiffness was lower in the BA group than in the SC group, the oscillatory shear index (OSI) was significantly higher in the BA group than in the SC group both at rest and immediately following the cycling intervention.

Conclusion

Long-term basketball exercise had a significant impact on common carotid arterial hemodynamic variables not only at rest but also after a cycling intervention. The role of OSI in the remodeling of arterial structure and function in the BA group at rest and after cycling requires clarification.
  相似文献   

19.
The supine pulmonary venous admixture (shunt) has been measured at Cerro de Pasco, 4,350 m altitude in eight subjects native to high altitude (HAN) under resting condition. Alveolar-arterial O2 tension difference (AaDO2) was also determined at rest and during exercise. The same subjects were studied again after 10 days' sojourn at sea level in Lima at 150 m altitude. They were compared with four subjects from sea level (SLN) who were studied first at Lima and after 2 and 10 days at Cerro de Pasco. At altitude, AaDO2 was smaller in HAN than SLN both at rest and during exercise. Shunt was the same in both groups. It is concluded that HAN show more even ventilation/perfusion relationship (VA/Q) at altitude, probably due to their high pulmonary artery pressure. On the contrary, SLN show less even VA/Q on altitude exposure, since their shunt decreased 37%. At sea level, HAN increased their AaDO2 due partially to an increase of 110% in their shunt, and in part due to less even VA/Q as shown by augmented VD/VT ratios. Each group tended to have a more effective gas exchange in its own environment.  相似文献   

20.
Race walking is the technical and athletic expression of fast walking and it can be considered as a type of endurance performance. The purpose of this study was to examine whether 12 weeks of a specially designed training program results in the further training enhancement of endurance performance and the related physiological parameters in already well-trained race walkers competing at the national and international level. The investigation protocol consisted of determining the maximal oxygen uptake (VO2peak) and related gas exchange values using an automated cardiopulmonary exercise system and of determining blood lactate variables (aerobic threshold - LTAer and the maximal lactate steady state - MLSS) during walking with proper technique at 8, 10, 12 and 14 km·h-1 for 4 minutes without rest in between. Thereafter, the speed on the treadmill was increased by 0.5 km·h-1 every two minutes until exhaustion to determine VO2peak. After 12 weeks of a specially designed endurance training, statistically significant increases in VO2peak (61.8±8.5 mL·kg-1·min-1 pre vs. 66.9±9.5 mL·kg-1·min-1 post training; p<0.05) and blood lactate variables (VO2-LTAer and VO2-MLSS; p<0.05) were noted. The obtained results suggest that the applied training program can improve endurance and race performance in previously well trained race walkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号