首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Asthma is characterized by chronic inflammation of the airway wall with the presence of activated T helper 2 (Th2) lymphocytes. The current study assessed the ability of Th2 cytokines to modulate fibroblast-mediated contraction of collagen gels to determine if Th2 cytokines could contribute to tissue remodeling by altering mesenchymal cell contraction. Human fetal lung fibroblasts, human adult bronchial fibroblasts and human airway smooth muscle cells were cast into native type I collagen gels and allowed to contract in the presence or absence of IL (interleukin)-4, IL-5, IL-10, or IL-13. IL-4 and IL-13 but not IL-5 and IL-10 augmented collagen gel contraction in a concentration-dependent manner. Neither IL-4 nor IL-13 altered fibroblast production of transforming growth factor-beta or fibronectin. Both, however, decreased fibroblast prostaglandin (PG) E(2) release. Decreased PGE(2) release was associated with a decreased expression of cyclooxygenase 1 and 2 protein and mRNA. Indomethacin completely inhibited PGE(2) release and also augmented contraction. IL-4 and IL-13, however, added together with indomethacin further augmented contraction suggesting both a PGE-dependent and a PGE-independent effect. These findings suggest that IL-4 and IL-13 may modulate airway tissue remodeling and, therefore, could play a role in the altered airway connective tissue which characterizes asthma.  相似文献   

2.
Theophylline has been used in the management of bronchial asthma and chronic obstructive pulmonary disease for over 50 years. It has not only a bronchodilating effect, but also an anti-inflammatory one conducive to the inhibition of airway remodeling, including subepithelial fibrosis. To date however, whether theophylline has a direct inhibitory effect on airway fibrosis has not been established. To clarify this question, we examined whether theophylline affected the function of lung fibroblasts. Theophylline suppressed TGF-beta-induced type I collagen (COL1) mRNA expression in lung fibroblasts and also inhibited fibroblast proliferation stimulated by FBS and TGF-beta-induced alpha-SMA protein. A cAMP analog also inhibited TGF-beta-induced COL1 mRNA expression in lung fibroblasts. A PKA inhibitor reduced the inhibitory effect of theophylline on TGF-beta-induced COL1 mRNA expression. These results indicate that theophylline exerts anti-fibrotic effects, at least partly, through the cAMP-PKA pathway.  相似文献   

3.
Mycoplasma pneumoniae (Mp) has been linked to chronic asthma. Airway remodeling (e.g., airway collagen deposition or fibrosis) is one of the pathological features of chronic asthma. However, the effects of respiratory Mp infection on airway fibrosis in asthma remain unclear. In the present study, we hypothesized that respiratory Mp infection may increase the airway collagen deposition in a murine model of allergic airway inflammation in part through upregulation of transforming growth factor (TGF)-beta1. Double (2 wk apart) inoculations of Mp or saline (control) were given to mice with or without previous allergen (ovalbumin) challenges. On days 14 and 42 after the last Mp or saline, lung tissue and bronchoalveolar lavage (BAL) fluid were collected for analyses of collagen and TGF-beta1 at protein and mRNA levels. In allergen-na?ve mice, Mp did not alter airway wall collagen. In allergen-challenged mice, Mp infections did not change airway wall collagen deposition on day 14 but increased the airway collagen on day 42; this increase was accompanied by increased TGF-beta1 protein in the airway wall and reduced TGF-beta1 protein release from the lung tissue into BAL fluid. Our results suggest that Mp infections could modulate airway collagen deposition in a murine model of allergic airway inflammation with TGF-beta1 involved in the collagen deposition process.  相似文献   

4.
Individuals with chronic asthma show a progressive decline in lung function that is thought to be due to structural remodeling of the airways characterized by subepithelial fibrosis and smooth muscle hyperplasia. Here we show that the tumor necrosis factor (TNF) family member LIGHT is expressed on lung inflammatory cells after allergen exposure. Pharmacological inhibition of LIGHT using a fusion protein between the IgG Fc domain and lymphotoxin β receptor (LTβR) reduces lung fibrosis, smooth muscle hyperplasia and airway hyperresponsiveness in mouse models of chronic asthma, despite having little effect on airway eosinophilia. LIGHT-deficient mice also show a similar impairment in fibrosis and smooth muscle accumulation. Blockade of LIGHT suppresses expression of lung transforming growth factor-β (TGF-β) and interleukin-13 (IL-13), cytokines implicated in remodeling in humans, whereas exogenous administration of LIGHT to the airways induces fibrosis and smooth muscle hyperplasia, Thus, LIGHT may be targeted to prevent asthma-related airway remodeling.  相似文献   

5.
Environmental tobacco smoke (ETS) can increase asthma symptoms and the frequency of asthma attacks. However, the contribution of ETS to airway remodeling in asthma is at present unknown. In this study, we have used a mouse model of allergen-induced airway remodeling to determine whether the combination of chronic exposure to ETS and chronic exposure to OVA allergen induces greater levels of airway remodeling than exposure to either chronic ETS or chronic OVA allergen alone. Mice exposed to chronic ETS alone did not develop significant eosinophilic airway inflammation, airway remodeling, or increased airway hyperreactivity to methacholine. In contrast, mice exposed to chronic OVA allergen had significantly increased levels of peribronchial fibrosis, increased thickening of the smooth muscle layer, increased mucus, and increased airway hyperreactivity which was significantly enhanced by coexposure to the combination of chronic ETS and chronic OVA allergen. Mice coexposed to chronic ETS and chronic OVA allergen had significantly increased levels of eotaxin-1 expression in airway epithelium which was associated with increased numbers of peribronchial eosinophils, as well as increased numbers of peribronchial cells expressing TGF-beta1. These studies suggest that chronic coexposure to ETS significantly increases levels of allergen-induced airway remodeling (in particular smooth muscle thickness) and airway responsiveness by up-regulating expression of chemokines such as eotaxin-1 in airway epithelium with resultant recruitment of cells expressing TGF-beta1 to the airway and enhanced airway remodeling.  相似文献   

6.
Although PGE(2) is a potent inhibitor of fibroblast function, PGE(2) levels are paradoxically elevated in murine lungs undergoing fibrotic responses. Pulmonary fibroblasts from untreated mice expressed all four E prostanoid (EP) receptors for PGE(2). However, following challenge with the fibrogenic agent, bleomycin, fibroblasts showed loss of EP2 expression. Lack of EP2 expression correlated with an inability of fibroblasts from bleomycin-treated mice to be inhibited by PGE(2) in assays of proliferation or collagen synthesis and blunted cAMP elevations in response to PGE(2). PGE(2) was similarly unable to suppress proliferation or collagen synthesis in fibroblasts from EP2(-/-) mice despite expression of the other EP receptors. EP2(-/-), but not EP1(-/-) or EP3(-/-) mice, showed exaggerated fibrotic responses to bleomycin administration in vivo as compared with wild-type controls. EP2 loss on fibroblasts was verified in a second model of pulmonary fibrosis using FITC. Our results for the first time link EP2 receptor loss on fibroblasts following fibrotic lung injury to altered suppression by PGE(2) and thus identify a novel fibrogenic mechanism.  相似文献   

7.
Prostaglandin E(2) (PGE(2)) is a potent suppressor of fibroblast activity. We previously reported that bleomycin-induced pulmonary fibrosis was exaggerated in granulocyte-macrophage colony-stimulating factor knockout (GM-CSF(-/-)) mice compared with wild-type (GM-CSF(+/+)) mice and that increased fibrosis was associated with decreased PGE(2) levels in lung homogenates and alveolar macrophage cultures. Pulmonary fibroblasts and alveolar epithelial cells (AECs) represent additional cellular sources of PGE(2) within the lung. Therefore, we examined fibroblasts and AECs from GM-CSF(-/-) mice, and we found that they elaborated significantly less PGE(2) than did cells from GM-CSF(+/+) mice. This defect was associated with reduced expression of cyclooxygenase-1 and -2 (COX-1 and COX-2), key enzymes in the biosynthesis of PGE(2). Additionally, proliferation of GM-CSF(-/-) fibroblasts was greater than that of GM-CSF(+/+) fibroblasts, and GM-CSF(-/-) AECs were impaired in their ability to inhibit fibroblast proliferation in coculture. The addition of GM-CSF to fibroblasts from GM-CSF(-/-) mice increased PGE(2) production and decreased proliferation. Similarly, AECs isolated from GM-CSF(-/-) mice with transgenic expression of GM-CSF under the surfactant protein C promoter (SpC-GM mice) produced more PGE(2) than did AEC from control mice. Finally, SpC-GM mice were protected from fluorescein isothiocyanate-induced pulmonary fibrosis. In conclusion, these data demonstrate that GM-CSF regulates PGE(2) production in pulmonary fibroblasts and AECs and thus plays an important role in limiting fibroproliferation.  相似文献   

8.
To elucidate mechanisms involved in the regulation of lung collagen content we studied hamsters with bleomycin-induced pulmonary fibrosis. Lung collagen in this model is increased as the result of greatly increased lung collagen synthesis rates. However, collagen synthesis rates are subsequently restored to normal. Hamster lung explants from both normal and bleomycin-exposed hamsters were cultured, and the effects of explant conditioned medium (CM) on lung fibroblast (IMR-90) proliferation and collagen production in vitro were determined. Lung explant CM increased fibroblast prostaglandin (PG)E2 production and intracellular cAMP, and decreased both fibroblast proliferation and collagen production in a dose-dependent manner. Greater activity was observed with lung explant CM from bleomycin-exposed lungs. Incubation of fibroblasts with indomethacin prior to addition of CM blocked CM-mediated changes in PGE2 and cAMP and inhibited changes in fibroblast proliferation and collagen production. Exogenous PGE2 or dibutyryl cAMP also suppressed fibroblast proliferation and collagen production. The suppressive activity in lung-conditioned medium is nondialyzable, has an apparent molecular weight of 15,000-20,000 by gel filtration, and is heat-stable. It is not species-restricted since CM from hamster lung affected human and hamster lung fibroblasts similarly. Activity is present preformed in lung and bronchoalveolar lavage fluid, although bronchoalveolar macrophages produce a nondialyzable factor in culture which suppresses fibroblast proliferation. The suppressive activity identified in fibrotic lung may represent a means for limiting collagen accumulation following tumor injury.  相似文献   

9.
This study aims to explore the influences of Paraoxonase‐1 (PON1) involved in airway inflammation and remodeling in asthma. Mice were divided into control, asthma, asthma + PON1 and asthma + NC groups, and asthma models were established via aerosol inhalation of ovalbumin (OVA). HE, Masson, and PAS stains were used to observe airway inflammation and remodeling, Giemsa staining to assess inflammatory cells in bronchoalveolar lavage fluid (BALF), qRT‐PCR and Western blot to detect PON1 expression, lipid peroxidation and glutathione assays to quantify malondialdehyde (MDA) activity and glutathione peroxidase (GSH) levels, ELISA to determine inflammatory cytokines and immunoglobulin, and colorimetry to detect PON1 activities. Additionally, mice lung macrophages and fibroblasts were transfected with PON1 plasmid in vitro; ELISA and qRT‐PCR were performed to understand the effects of PON1 on inflammatory cytokines secreted by lung macrophages, MTT assay for lung fibroblasts proliferation and qRT‐PCR and Western blot for the expressions of PON1, COL1A1, and fibronectin. After overexpression of PON1, the asthma mice had decreased inflammatory cell infiltration, fibrosis degree, and airway wall thickness; inflammatory cells and inflammatory cytokines in BALF were also reduced, expressions of OVA‐IgE and IgG1, and MDA activity were decreased, but the expressions of OVA‐IgG2a and INF‐γ and GSH levels were increased. Besides, PON1 significantly inhibited microphage expression of LPS‐induced inflammatory cytokines, lung fibroblast proliferation, and COL1A1 and fibronectin expression. Thus, PON1 could relieve airway inflammation and airway remodeling in asthmatic mice and inhibit the secretion of LPS‐induced macrophage inflammatory cytokines and the proliferation of lung fibroblasts.  相似文献   

10.
Airway inflammation and remodeling are important pathophysiologic features of chronic asthma. Previously, we have developed a mouse model of prolonged allergen challenge which exhibits many characteristics of chronic asthma such as goblet cell hyperplasia and subepithelial collagen deposition, in association with an increase in lung expression of the profibrotic mediator, TGF-beta. The aim of this study was to determine the effects of blockade of TGF-beta on the development of airway inflammation and remodeling using our murine model of prolonged allergen challenge. Importantly anti-TGF-beta Ab was administered therapeutically, with dosing starting after the onset of established eosinophilic airway inflammation. Therapeutic treatment of mice with anti-TGF-beta Ab significantly reduced peribronchiolar extracellular matrix deposition, airway smooth muscle cell proliferation, and mucus production in the lung without affecting established airway inflammation and Th2 cytokine production. Thus, our data suggest that it might be possible to uncouple airway inflammation and remodeling during prolonged allergen challenge. In addition, anti-TGF-beta Ab treatment was shown to regulate active TGF-beta signaling in situ with a reduction in the expression of phospho-Smad 2 and the concomitant up-regulation of Smad 7 in lung sections. Therefore, this is the first report to suggest that anti-TGF-beta Ab treatment prevents the progression of airway remodeling following allergen challenge even when given in a therapeutic mode. Moreover, the molecular mechanism behind this effect may involve regulation of active TGF-beta signaling.  相似文献   

11.
12.
Collagen deposition by fibroblasts contributes to scarring in fibrotic diseases. Activation of protein kinase A (PKA) by cAMP represents a pivotal brake on fibroblast activation, and the lipid mediator prostaglandin E(2) (PGE(2)) exerts its well known anti-fibrotic actions through cAMP signaling. However, fibrotic fibroblasts from the lungs of patients with idiopathic pulmonary fibrosis, or of mice with bleomycin-induced fibrosis, are resistant to the normal collagen-inhibiting action of PGE(2). In this study, we demonstrate that plasminogen activation to plasmin restores PGE(2) sensitivity in fibrotic lung fibroblasts from human and mouse. This involves amplified PKA signaling resulting from the promotion of new interactions between AKAP9 and PKA regulatory subunit II in the perinuclear region as well as from the inhibition of protein phosphatase 2A. This is the first report to show that an extracellular mediator can dramatically reorganize and amplify the intracellular PKA-A-kinase anchoring protein signaling network and suggests a new strategy to control collagen deposition by fibrotic fibroblasts.  相似文献   

13.
Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal lung disease characterized by the overgrowth, hardening, and scarring of lung tissue. The exact mechanisms of how IPF develops and progresses are unknown. IPF is characterized by extracellular matrix remodeling and accumulation of active TGFβ, which promotes collagen expression and the differentiation of smooth muscle α-actin (SMA)-positive myofibroblasts. Aortic carboxypeptidase-like protein (ACLP) is an extracellular matrix protein secreted by fibroblasts and myofibroblasts and is expressed in fibrotic human lung tissue and in mice with bleomycin-induced fibrosis. Importantly, ACLP knockout mice are significantly protected from bleomycin-induced fibrosis. The goal of this study was to identify the mechanisms of ACLP action on fibroblast differentiation. As primary lung fibroblasts differentiated into myofibroblasts, ACLP expression preceded SMA and collagen expression. Recombinant ACLP induced SMA and collagen expression in mouse and human lung fibroblasts. Knockdown of ACLP slowed the fibroblast-to-myofibroblast transition and partially reverted differentiated myofibroblasts by reducing SMA expression. We hypothesized that ACLP stimulates myofibroblast formation partly through activating TGFβ signaling. Treatment of fibroblasts with recombinant ACLP induced phosphorylation and nuclear translocation of Smad3. This phosphorylation and induction of SMA was dependent on TGFβ receptor binding and kinase activity. ACLP-induced collagen expression was independent of interaction with the TGFβ receptor. These findings indicate that ACLP stimulates the fibroblast-to-myofibroblast transition by promoting SMA expression via TGFβ signaling and promoting collagen expression through a TGFβ receptor-independent pathway.  相似文献   

14.
Uncontrolled fibroblast activation is one of the hallmarks of fibrotic lung disease. Prostaglandin E(2) (PGE(2)) has been shown to inhibit fibroblast migration, proliferation, collagen deposition, and myofibroblast differentiation in the lung. Understanding the mechanisms for these effects may provide insight into the pathogenesis of fibrotic lung disease. Previous work has focused on commercially available fibroblast cell lines derived from tissue whose precise origin and histopathology are often unknown. Here, we sought to define the mechanism of PGE(2) inhibition in patient-derived fibroblasts from peripheral lung verified to be histologically normal. Fibroblasts were grown from explants of resected lung, and proliferation and collagen I expression was determined following treatment with PGE(2) or modulators of its receptors and downstream signaling components. PGE(2) inhibited fibroblast proliferation by 33% and collagen I expression by 62%. PGE(2) resulted in a 15-fold increase in intracellular cAMP; other cAMP-elevating agents inhibited collagen I in a manner similar to PGE(2). These effects were reproduced by butaprost, a PGE(2) analog selective for the cAMP-coupled E prostanoid (EP) 2 receptor, but not by selective EP3 or EP4 agonists. Fibroblasts expressed both major cAMP effectors, protein kinase A (PKA) and exchange protein activated by cAMP-1 (Epac-1), but only a selective PKA agonist was able to appreciably inhibit collagen I expression. Treatment with okadaic acid, a phosphatase inhibitor, potentiated the effects of PGE(2). Our data indicate that PGE(2) inhibits fibroblast activation in primary lung fibroblasts via binding of EP2 receptor and production of cAMP; inhibition of collagen I proceeds via activation of PKA.  相似文献   

15.
Idiopathic pulmonary fibrosis (IPF) is a chronic, lethal interstitial lung disease in which the aberrant PTEN/Akt axis plays a major role in conferring a survival phenotype in response to the cell death inducing properties of type I collagen matrix. The underlying mechanism by which IPF fibroblasts become desensitized to polymerized collagen, thereby eluding collagen matrix-induced cell death has not been fully elucidated. We hypothesized that the pathologically altered PTEN/Akt axis suppresses autophagy via high mTOR kinase activity, which subsequently desensitizes IPF fibroblasts to collagen matrix induced cell death. We found that the autophagosome marker LC3-2 expression is suppressed, while mTOR activity remains high when IPF fibroblasts are cultured on collagen. However, LC3-2 expression increased in response to IPF fibroblast attachment to collagen in the presence of rapamycin. In addition, PTEN over-expression or Akt inhibition suppressed mTOR activity, thereby increasing LC3-2 expression in IPF fibroblasts. Furthermore, the treatment of IPF fibroblasts over-expressing PTEN or dominant negative Akt with autophagy inhibitors increased IPF fibroblast cell death. Enhanced p-mTOR expression along with low LC3-2 expression was also found in myofibroblasts within the fibroblastic foci from IPF patients. Our data show that the aberrant PTEN/Akt/mTOR axis desensitizes IPF fibroblasts from polymerized collagen driven stress by suppressing autophagic activity, which produces a viable IPF fibroblast phenotype on collagen. This suggests that the aberrantly regulated autophagic pathway may play an important role in maintaining a pathological IPF fibroblast phenotype in response to collagen rich environment.  相似文献   

16.
Pulmonary fibrosis is characterized by alterations in fibroblast phenotypes resulting in excessive extracellular matrix accumulation and anatomic remodeling. Current therapies for this condition are largely ineffective. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the nuclear hormone receptor superfamily, the activation of which produces a number of biological effects, including alterations in metabolic and inflammatory responses. The role of PPAR-gamma as a potential therapeutic target for fibrotic lung diseases remains undefined. In the present study, we show expression of PPAR-gamma in fibroblasts obtained from normal human lungs and lungs of patients with idiopathic interstitial pneumonias. Treatment of lung fibroblasts and myofibroblasts with PPAR-gamma agonists results in inhibition of proliferative responses and induces cell cycle arrest. In addition, PPAR-gamma agonists, including a constitutively active PPAR-gamma construct (VP16-PPAR-gamma), inhibit the ability of transforming growth factor-beta1 to induce myofibroblast differentiation and collagen secretion. PPAR-gamma agonists also inhibit fibrosis in a murine model, even when administration is delayed until after the initial inflammation has largely resolved. These observations indicate that PPAR-gamma is an important regulator of fibroblast/myofibroblast activation and suggest a role for PPAR-gamma ligands as novel therapeutic agents for fibrotic lung diseases.  相似文献   

17.
18.
Allergic asthma is characterized by airway inflammation in response to chronic allergen exposure, resulting in remodeling of the airway wall accompanied by dysfunctional airway physiology. However, a link between the immune-inflammatory response to allergen and changes to airway structure and physiology has not yet been fully elucidated. Moreover, the impact of inhaled corticosteroids and beta(2)-agonists, the primary pharmacotherapy for asthma, on this process has not been completely evaluated. In this study, we employed a murine model of chronic exposure to a common environmental aeroallergen, house dust mite, to recapitulate the phenotype of clinical asthma. By examining the therapeutic effects of corticosteroid/beta(2)-agonist combination therapy with budesonide/formoterol (BUD/FORM) in this model of airway disease, we endeavored to determine the impact of BUD/FORM on lung inflammation, structure, and physiology. BUD/FORM was delivered either while allergen exposure was ongoing (concurrent therapy) or following the cessation of allergen exposure (postexposure therapy). Our results show that airway inflammation was substantially reduced in BUD/FORM-treated mice in the concurrent therapy group, whereas in the postexposure therapy group airway inflammation spontaneously resolved. In contrast, BUD/FORM was most effective in resolving several aspects of airway remodeling and bronchial hyperreactivity when delivered in conjunction with allergen withdrawal. This study demonstrates that although both BUD/FORM therapy and allergen avoidance independently reduce airway inflammation, only BUD/FORM therapy in conjunction with allergen avoidance can effectively reverse airway remodeling and bronchial hyperreactivity induced by chronic allergen exposure.  相似文献   

19.
Asthma is characterized by the presence of increased numbers of inflammatory cells in the airway in particular eosinophils and Th2 lymphocytes. In addition to the presence of inflammatory cells, the airways of patients with asthma exhibit varying levels of structural changes termed airway remodeling. These structural changes include subepithelial fibrosis, smooth muscle hypertrophy/hyperplasia, epithelial cell mucus metaplasia, and increased angiogenesis. This review focuses on the potential role of the eosinophil in promoting features of airway remodeling including fibrosis and neovascularization in chronic asthma. Eosinophils may potentially contribute to airway remodeling through release of eosinophil derived mediators such as TGFbeta which act directly upon target fibroblasts to promote fibrosis. In addition to the potential importance of the eosinophil to remodeling in asthma, eosinophilic esophagitis (EE) is another eosinophil associated disease that is associated with increased levels of esophageal eosinophils, increased levels of TGFbeta expression, and increased levels of fibrosis, suggesting that a similar mechanism of remodeling may contribute to both of these eosinophil associated diseases. However, remodeling in both asthma and EE is likely complex involving both eosinophil dependent and eosinophil independent pathways. Further studies in both humans and animal models will help to increase our knowledge of the contribution of the eosinophil to remodeling in asthma as well as EE.  相似文献   

20.

Background

Long-term and unresolved airway inflammation and airway remodeling, characteristic features of chronic asthma, if not treated could lead to permanent structural changes in the airways. Aldose reductase (AR), an aldo-sugar and lipid aldehyde metabolizing enzyme, mediates allergen-induced airway inflammation in mice, but its role in the airway remodeling is not known. In the present study, we have examined the role of AR on airway remodeling using ovalbumin (OVA)-induced chronic asthma mouse model and cultured human primary airway epithelial cells (SAECs) and mouse lung fibroblasts (mLFs).

Methods

Airway remodeling in chronic asthma model was established in mice sensitized and challenged twice a week with OVA for 6 weeks. AR inhibitor, fidarestat, was administered orally in drinking water after first challenge. Inflammatory cells infiltration in the lungs and goblet cell metaplasia, airway thickening, collagen deposition and airway hyper-responsiveness (AHR) in response to increasing doses of methacholine were assessed. The TGFβ1-induced epithelial-mesenchymal transition (EMT) in SAECs and changes in mLFs were examined to investigate AR-mediated molecular mechanism(s) of airway remodeling.

Results

In the OVA-exposed mice for 6 wks inflammatory cells infiltration, levels of inflammatory cytokines and chemokines, goblet cell metaplasia, collagen deposition and AHR were significantly decreased by treatment with AR inhibitor, fidarestat. Further, inhibition of AR prevented TGFβ1-induced altered expression of E-cadherin, Vimentin, Occludin, and MMP-2 in SAECs, and alpha-smooth muscle actin and fibronectin in mLFs. Further, in SAECs, AR inhibition prevented TGFβ1- induced activation of PI3K/AKT/GSK3β pathway but not the phosphorylation of Smad2/3.

Conclusion

Our results demonstrate that allergen-induced airway remodeling is mediated by AR and its inhibition blocks the progression of remodeling via inhibiting TGFβ1-induced Smad-independent and PI3K/AKT/GSK3β-dependent pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号