首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Nuclear staining with acridine orange was used to assess cell viability in the cortex of wheat and barley seminal roots from glasshouse and field experiments. Results from this method correlated well with nuclear assessments made in unstained or Feulgen-stained roots, and other evidence is presented to support the validity of the method. The pattern of root cortex death (RCD) was similar in wheat and barley and consistent over a wide range of conditions. Behind the extending root tip and zone of nucleate root hairs, nuclei disappeared progressively from the outer five (of six) cortical cell layers of the root axes, starting in the epidermis. Stainable nuclei remained in the sixth cell layer, next to the endodermis, and in most cell layers around the bases of root laterals and in a small region immediately below the grain. The onset of cell death was apparently related more to the age of a root region than to its distance behind the root tip, and it was not closely correlated with endodermal or stelar development assessed by staining with phloroglucinol/HCl. The rate of RCD was much faster in wheat than barley in both glasshouse and field conditions, and faster in some spring wheat cultivars than in others in the glasshouse. RCD occurred in sterile vermiculite and perlite and was not enhanced by the presence of soil microorganisms; nor was it enhanced in soil by the addition of the non-pathogenic fungal parasitesPhialophora radicicola var..graminicola orMicrodochium bolleyi. RCD is suggested to be endogenously controlled by the amount of photosynthate reaching the cortex. Its implications for growth of soil microorganisms and especially for growth and biological control of root-infecting fungi are discussed.  相似文献   

2.
In cereals, a progressively increasing root cortical cell death (RCD) occurs from the root tip and upwards when measured with vital staining methods. In this study, nuclear DNA fragmentation was studied in seminal root segments of wheat and barley in order to investigate if the cell death resembled apoptosis. The fraction of cells with TUNEL-positive nuclei increased gradually with increasing root age in both the cortex and the stele. Southern analysis showed a typical ladder pattern, indicating nucleosomal fragmentation already in 2-day-old root segments, and this became more pronounced in older root segments. DNA fragmentation appeared to be more extensive in wheat than in barley roots. These results confirm earlier studies, where RCD has been found to be earlier initiated and to proceed at a faster rate in wheat. The characteristic DNA fragmentation found in the roots indicates programmed cell death with mechanistic similarities to apoptosis. Ultrastructural examination of nuclei in cortex cells with transmission electron microscopy revealed an increased chromatin condensation in older roots, particularly in wheat.
In addition, we found nucleosomal DNA ladders in young leaf tissue from wheat but not from barley.  相似文献   

3.
The abundance of bacteria in the rhizoplane of barley varieties was investigated at different soil nitrogen levels. Increased amendments of nitrogen resulted in higher bacterial numbers in the rhizoplane of barley seedlings of different varieties. A negative correlation was found between nitrogen level in the soil and the growth rate of the seedling roots. The effect of nitrogen on the bacterial abundances could be indirect through changed root growth and thereby changed exudation. The exudation of soluble organic carbon componds from barley seedling roots were measured in hydroponic culture. The effect of natural variation in root growth rate and of different concentrations of nitrogen in the nutrient solution was investigated. The amount of exudates consituted 2–66% of the dry weight increase in root biomass, depending on the root growth. Slower growing roots released considerably more organic carbon per unit root weight than faster growing roots. The variation in root exudation appeared to be mainly explained by differences in root growth, rather than of the nitrogen concentration in the nutrient solution. A significantly higher exudation rate was found during day time compared to night.  相似文献   

4.
A split-root technique was used to examine the interaction between Pratylenchus penetrans and the cortical root-rotting pathogen Rhizoctonia fragariae in strawberry black root rot. Plants inoculated with both pathogens on the same half of a split-root crown had greater levels of root rot than plants inoculated separately or with either pathogen alone. Isolation of R. fragariae from field-grown roots differed with root type and time of sampling. Fungal infection of structural roots was low until fruiting, whereas perennial root colonization was high. Isolation of R. fragariae from feeder roots was variable, but was greater from feeder roots on perennial than from structural roots. Isolation of the fungus was greater from structural roots with nematode lesions than from non-symptomatic roots. Rhizoctonia fragariae was a common resident on the sloughed cortex of healthy perennial roots. From this source, the fungus may infect additional roots. The direct effects of lesion nematode feeding and movement are cortical cell damage and death. Indirect effects include discoloration of the endodermis and early polyderm formation. Perhaps weakened or dying cells caused directly or indirectly by P. penetrans are more susceptible to R. fragariae, leading to increased disease.  相似文献   

5.
6.
Cell death in the root cortex of cereals was assessed by an inability to detect nuclei, using acridine orangelfluorescence microscopy after fixation and mild acid hydrolysis. Seminal roots were scanned at x 100 magnification and their cortices were considered dead when nuclei were absent from all cell layers except the innermost one, adjacent to the endodermis; this cell layer remains alive long after the rest of the cortex has died. Cortical death of wheat and barley roots occurred in the absence of major pathogens. Cell death started behind the root hair zone of the main root axis, initially in the outermost cell layer of the cortex and then progressively inwards towards the endodermis; however, the cortex remained alive for a distance of c. 800 μm around emerging root laterals. The rate of cortical death was more rapid in wheat than in barley, both under field conditions and in the glasshouse at 20 °C. Thus, field-grown spring wheat (Sicca) showed 50% death of the root cortex in the top 6 cm of first seminal roots after 35 days (growth stage 1–2), whereas spring barley (Julia) showed 50% death of the root cortex after 67 days (growth stage 8). In the glasshouse, the top 9 cm of first seminal roots on 16-day plants showed 55% cortical death in wheat (Cappelle-Desprez) but only 2.5% cortical death in barley (Igri). The same rates of death were found in all subsequent seminal roots. The wheat root cortex died at the same rate in sterile and unsterile conditions, and at the same rate in the presence/absence of Phialophora radicicola Cain var. graminicola Deacon or Aureobasidium bolleyi (Sprague) von Arx. Hence, although P. radicicola and other soil microorganisms may benefit from root cortex death they do not exert biological control of take-all by enhancing or retarding the rate of this process. To study the effects of cortical death on take-all, Gaeumannomyces graminis (Sacc.) Arx & Olivier var. tritici Walker was point-inoculated at the tips and on older (5 and 15 day) regions of wheat seminal roots. After 17 days at 20 °C the fungus had grown to the same extent as runner-hyphae in all cases, but the severity of disease decreased with increasing age of the root cortex prior to inoculation; thus, G. graminis caused most extensive vascular discoloration and most intense vascular blockage in roots inoculated at their tips. Similar experiments on wheat and barley roots inoculated separately with P. radicicola and G. graminis suggest that at least three factors associated with cortical death influence infection by these fungi: (1) initially, cell death may enhance infection because nutrients are made available to the parasites and host resistance within the cortex is reduced; (2) weak parasites and soil saprophytes may colonise dead and dying cortices in competition with G. graminis and P. radicicola and thereby reduce infection by these fungi; (3) changes in the endodermis and adjacent cell layers may be associated with cortical death and may retard invasion of the stele. Future work will seek to establish the relative importance of these factors and extend this study to other cereal host-fungus combinations.  相似文献   

7.
Colonisation of plant roots by endophytic fungi may confer benefits to the host such as protection against abiotic or biotic stresses or plant growth promotion. The exploitation of these properties is of great relevance at an applied level, either to increase yields of agricultural crops or in reforestation activities. Fusarium equiseti is a naturally occurring endophyte in vegetation under stress in Mediterranean ecosystems. Pochonia chlamydosporia is a nematode egg-parasitic fungus with a worldwide distribution. Both fungi have the capacity to colonise roots of non-host plants endophytically and to protect them against phytopathogenic fungi under laboratory conditions. The aim of this study was to evaluate the root population dynamics of these fungi under non-axenic practical conditions. Both fungal species were inoculated into barley roots. Their presence in roots and effects on plant growth and incidence of disease caused by the pathogen Gaeumannomyces graminis var. tritici were monitored periodically. Both fungi colonised barley roots endophytically over the duration of the experiment and competed with other existing fungal root colonisers. Furthermore, colonisation of roots by P. chlamydosporia promoted plant growth. Although a clear suppressive effect on disease could not be detected, F. equiseti isolates reduced the mean root lesion length caused by the pathogen. Results of this work suggest that both F. equiseti and P. chlamydosporia are long-term root endophytes that confer beneficial effects to the host plant.  相似文献   

8.
 Colonization of Hordeum vulgare L. cv. Salome (barley)and Triticum aestivum L. cv. Caprimus (wheat) roots by the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith leads to de novo synthesis of isoprenoid cyclohexenone derivatives with blumenin [9-O-(2′-O-β-glucuronosyl)-β-glucopyranoside of 6-(3-hydroxybutyl)-1,1,5-trimethyl-4-cyclohexen-3-one] as the major constituent and to transient accumulation of hydroxycinnamate amides (4-coumaroylagmatine and -putrescine). Accumulation of these compounds in mycorrhizal wheat roots started 2 weeks after sowing together with the onset of arbuscule formation and proceeded with mycorrhizal progression. Highest levels were reached in 3- to 4-week-old secondary roots (root branches of first and higher order) characterized by the formation of vesicles. In the final developmental stages, the fungus produced massive amounts of spores, enclosing the stele of older root parts (older than 5 weeks) characterized by cortical death. In these root parts, the secondary compounds were detected in trace amounts only, indicating that they were located in the cortical tissues. Some rhizosphere bacteria tested, i.e. Agrobacterium rhizogenes, Pseudomonas fluorescens, and Rhizobium leguminosarum, markedly stimulated both fungal root colonization and blumenin accumulation, thus, acting as mycorrhiza-helper bacteria (MHB). Application of blumenin itself strongly inhibited fungal colonization and arbuscule formation at early stages of mycorrhiza development. This was associated with a markedly reduced accumulation of the hydroxycinnamate amides 4-coumaroylputrescine and -agmatine. The results suggest that both the isoprenoid and the phenylpropanoid metabolism are closely linked to the developmental stage and the extent of fungal colonization. Their possible involvement in the regulation of mycorrhiza development is discussed. Accepted: 18 September 1998  相似文献   

9.
Surface areas and energetic properties of the shooting stage roots of rye (Secale L.), triticale (Triticale), barley (Hordeum L.) and four wheat (Triticum L.) varieties were estimated from experimental water vapor adsorption data. Roots stressed during 10 days at pH 4 with aluminium concentrations ranging from 0 to 40 mg dm–3 were studied. Roots grown continuously at pH 7 were taken as controls. The surface properties of the roots grown at pH 4 without Al addition were apparently the same as those of the control roots. With the increase of the concentration of the aluminium treatment the surface area of the roots increased for all of the plants, beginning at 5 mg Al dm–3 for barley, at 10 mg Al dm–3for wheat and triticale, and at 40 mg Al dm–3 for rye. The average water vapor adsorption energy of the root surface decreased in general with the increase of Al stress concentration for all plants but triticale, for which this increased. The sensitive cereal varieties seem to have greater amount of high energy adsorption centers (more polar surface) than the resistant ones (lower surface polarity), however more data is needed to justify this hypothesis. For Al-sensitive roots, fraction of high energy adsorption sites decreased and fraction of low energy sites increased under the Al stress. Smaller changes in adsorption energy sites were noted for roots of Al-resistant plants.  相似文献   

10.
Summary The effects of A1 on the growth and mineral composition of different cultivars of triticale (X Triticosecale, Wittmack), wheat (Triticum aestivum L.) and rye (Secale cereale L.) growing in 1/5 strength Steinberg solutions containing 0 or 6 ppm A1 were evaluated after 32 days. Aluminum increased the concentrations of P and K in the roots and K in the tops of most of the cultivars tested. A1 tolerant triticale retained a lower concentration of Mg in the roots and tops than the A1 sensitive triticale, when subjected to A1 stress. In addition, A1 treatments resulted in smaller increases in root P for the A1 tolerant triticale than for the A1 sensitive cultivars.The concentration of root Ca and P of the A1 tolerant wheat cultivars were significantly below that of the more sensitive plants. Aluminum tolerance in rye appeared to be associated with lower Ca and higher Mg concentrations in the tops. The accumulation of P and A1 in the roots was characteristic of sensitivity in triticale, wheat and rye.  相似文献   

11.
The basidiomycete fungus Piriformospora indica colonizes roots of a broad range of mono- and dicotyledonous plants. It confers enhanced growth, improves resistance against biotic and tolerance to abiotic stress, and enhances grain yield in barley. To analyze mechanisms underlying P. indica-induced improved grain yield in a crop plant, the influence of different soil nutrient levels and enhanced biotic stress were tested under outdoor conditions. Higher grain yield was induced by the fungus independent of different phosphate and nitrogen fertilization levels. In plants challenged with the root rot-causing fungus Fusarium graminearum, P. indica was able to induce a similar magnitude of yield increase as in unchallenged plants. In contrast to the arbuscular mycorrhiza fungus Glomus mosseae, total phosphate contents of host plant roots and shoots were not significantly affected by P. indica. On the other hand, barley plants colonised with the endophyte developed faster, and were characterized by a higher photosynthetic activity at low light intensities. Together with the increased root formation early in development these factors contribute to faster development of ears as well as the production of more tillers per plant. The results indicate that the positive effect of P. indica on grain yield is due to accelerated growth of barley plants early in development, while improved phosphate supply—a central mechanism of host plant fortification by arbuscular mycorrhizal fungi—was not observed in the P. indica-barley symbiosis.  相似文献   

12.
Plant and Soil - Shooting stage roots of cereal plants varying in Al tolerance: rye (Secale L.), triticale (Triticale), barley (Hordeum L.) and four wheat (Triticum L.) varieties grown at pH 7...  相似文献   

13.
It has been shown previously that root growth can be inhibited by basic, animal proteins. In an effort to see if a plant histone was more efficacious than the animal protein, roots were grown in the presence of wheat histone. Otber basic polymers were also tested. Polycations, including salmine, lysozyme, ribonuclease, wheat germ histone, thymus histone and polylysine inhibit root elongation of barley and wheat. Polyglutamate and lysylglycine at comparable weight concentrations are not inhibitory. No difference in the efficacy of tbe plant and the animal histones could be found with either plant, which suggests that the action is non-specific. Growth of roots inhibited by histone, trypsin, or lysozyme can resume after removal of the polycation. The mechanism whereby polycations influence root growth is not known, but it is clear that the polymeric state of ionic functional groups is of paramount importance in the binding of the polycations to cell surfaces.  相似文献   

14.
The progression of common root-rot lesions on subcrown internodes of Neepawa wheat and Bonanza barley plants inoculated 14, 26, 38 and 50 days after seeding was measured in growth chamber tests. Both in wheat and barley, lesion development was more rapid in older than in younger plants. Variables such as mean daily rates of linear progression of lesions, disease ratings, and proportion of plants becoming severely diseased were higher in older than in younger plants. The possible stress resulting from the removal of the crown roots on more rapid disease development in older than in younger plants is discussed.  相似文献   

15.
16.
Root and shoot growth of semi-dwarf and taller winter wheats   总被引:1,自引:0,他引:1  
Investigations are reported of root and shoot growth in semi-dwarf and taller winter wheat varieties grown in contrasting soils over three years. Comparisons were made of the distribution with depth of roots, estimated by injecting rubidium-86 into stem bases and counting the content in soil cores. The relative ability to absorb phosphate from different zones was measured from the recovery in aerial parts of 32P injected into the soil at different depths. The distribution of dry matter in roots and aerial parts, and total root length, was measured using soil cores and samples of aerial parts taken during the growth of the crop. Relative growth rates of the aerial parts followed a sigmoid curve, but those of the roots showed little change between germination and anthesis. There was little evidence of varietal differences in root growth, though there was some indication that at depth the roots of the semi-dwarf varieties were more extensive and absorbed more phosphate than those of the taller varieties.  相似文献   

17.
Zhao Z  Ma JF  Sato K  Takeda K 《Planta》2003,217(5):794-800
While barley ( Hordeum vulgare L.) is the most sensitive species to Al toxicity among small-grain crops, variation in Al resistance between cultivars does exist. We examined the mechanism responsible for differential Al resistance in 21 barley varieties. Citrate was secreted from the roots in response to Al stress. A positive correlation between citrate secretion and Al resistance [(root elongation with Al)/(root elongation without Al)] and a negative correlation between citrate secretion and Al content of root apices, were obtained, suggesting that citrate secretion from the root apices plays an important role in excluding Al and thereby detoxifying Al. The Al-induced secretion of citrate was characterized using an Al-resistant variety (Sigurdkorn) and an Al-sensitive variety (Kearney). In Sigurdkorn, Al-induced secretion of citrate occurred within 20 min, and the secretion did not increase with increasing external Al concentration. The Al-induced citrate secretion ceased at low temperature (6 degrees C) and was inhibited by anion-channel inhibitors. Internal citrate content of root apices was increased by Al exposure in Sigurdkorn, but was not affected in Kearney. The activity of citrate synthase was unaffected by Al in both Al-resistant and Al-sensitive varieties. The secretion rate of organic acid anions from barley was the lowest among wheat, rye and triticale.  相似文献   

18.
The functional implications of root cortical senescence (RCS) are poorly understood. We tested the hypotheses that RCS in barley (1) reduces the respiration and nutrient content of root tissue; (2) decreases radial water and nutrient transport; and (3) is accompanied by increased suberization to protect the stele. Genetic variation for RCS exists between modern germplasm and landraces. Nitrogen and phosphorus deficiency increased the rate of RCS. Maximal RCS, defined as the disappearance of the entire root cortex, reduced root nitrogen content by 66%, phosphorus content by 63% and respiration by 87% compared with root segments with no RCS. Roots with maximal RCS had 90, 92 and 84% less radial water, nitrate and phosphorus transport, respectively, compared with segments with no RCS. The onset of RCS coincided with 30% greater aliphatic suberin in the endodermis. These results support the hypothesis that RCS reduces root carbon and nutrient costs and may therefore have adaptive significance for soil resource acquisition. By reducing root respiration and nutrient content, RCS could permit greater root growth, soil resource acquisition and resource allocation to other plant processes. RCS merits investigation as a trait for improving the performance of barley, wheat, triticale and rye under edaphic stress.  相似文献   

19.
Summary In comparative tests in a glasshouse, the cortex of oat and rye roots senesced more slowly than the cortex of wheat and barley roots. Of the cereals tested, wheat showed the most rapid rate of root cortical senescence, and the rate was unaffected by inoculation of leaves withErysiphe graminis. The results are discussed in relation to infection by root pathogens.  相似文献   

20.
Plants are able to interact with their environment by emitting volatile organic compounds. We investigated the volatile interactions that take place below ground between barley roots and two pathogenic fungi, Cochliobolus sativus and Fusarium culmorum. The volatile molecules emitted by each fungus, by non-infected barley roots and by barley roots infected with one of the fungi or the two of them were extracted by head-space solid phase micro extraction and analyzed by gas chromatography mass spectrometry. The effect of fungal volatiles on barley growth and the effect of barley root volatiles on fungal growth were assessed by cultivating both organisms in a shared atmosphere without any physical contact. The results show that volatile organic compounds, especially terpenes, are newly emitted during the interaction between fungi and barley roots. The volatile molecules released by non-infected barley roots did not significantly affect fungal growth, whereas the volatile molecules released by pathogenic fungi decreased the length of barley roots by 19 to 21.5% and the surface of aerial parts by 15%. The spectrum of the volatiles released by infected barley roots had no significant effect on F. culmorum growth, but decreased C. sativus growth by 13 to 17%. This paper identifies the volatile organic compounds emitted by two pathogenic fungi and shows that pathogenic fungi can modify volatile emission by infected plants. Our results open promising perspectives concerning the biological control of edaphic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号