首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is not known whether the diameter of peripheral conduit arteries may impose a limitation on muscle blood flow and oxygen uptake at peak effort in humans, and it is not clear whether these arteries are dimensioned in relation to the tissue volume they supply or, rather, to the type and intensity of muscular activity. In this study, eight humans, with a peak pulmonary oxygen uptake of 3.90 +/- 0.31 (range 2.29-5.03) l/min during ergometer cycle exercise, performed one-legged dynamic knee extensor exercise up to peak effort at 68 +/- 7 W (range 55-100 W). Peak values for knee extensor blood flow (thermodilution) and oxygen uptake of 6.06 +/- 0.74 (range 4.75-9.52) l/min and 874 +/- 124 (range 590-1,521) ml/min, respectively, were achieved. Pulmonary oxygen uptake reached a peak of 1.72 +/- 0.19 (range 1.54-2.33) l/min. Diameters of common and profunda femoral arteries determined by ultrasound Doppler were 10.6 +/- 0.4 (range 8.2-12.7) and 6.0 +/- 0.4 (range 4.5-8.0) mm, respectively. Thigh and quadriceps muscle volume measured by computer tomography were 10.06 +/- 0.66 (range 6.18-10.95) and 2.36 +/- 0.19 (range 1.31-3.27) liters, respectively. The common femoral artery diameter, but not that of the profunda branch, correlated with the thigh volume and quadriceps muscle mass. There were no relationships between either of the diameters and the absolute or muscle mass-related resting and peak values of blood flow and oxygen uptake, peak pulmonary oxygen uptake, or peak power output during knee extensor exercise. However, common femoral artery diameter correlated to peak pulmonary oxygen uptake during ergometer cycle exercise. In conclusion, common and profunda femoral artery diameters are sufficient to ensure delivery to the quadriceps muscle. However, the common branch may impose a limitation during ergometer cycle exercise.  相似文献   

2.
To elucidate the potential limitations on maximal human quadriceps O2 capacity, six subjects trained (T) one quadriceps on the single-legged knee extensor ergometer (1 h/day at 70% maximum workload for 5 days/wk), while their contralateral quadriceps remained untrained (UT). Following 5 wk of training, subjects underwent incremental knee extensor tests under normoxic (inspired O2 fraction = 21%) and hyperoxic (inspired O2 fraction = 60%) conditions with the T and UT quadriceps. Training increased quadriceps muscle mass (2.9 +/- 0.2 to 3.1 +/- 0.2 kg), but did not change fiber-type composition or capillary density. The T quadriceps performed at a greater peak power output than UT, under both normoxia (101 +/- 10 vs. 80 +/- 7 W; P < 0.05) and hyperoxia (97 +/- 11 vs. 81 +/- 7 W; P < 0.05) without further increases with hyperoxia. Similarly, thigh peak O2 consumption, blood flow, vascular conductance, and O2 delivery were greater in the T vs. the UT thigh (1.4 +/- 0.2 vs. 1.1 +/- 0.1 l/min, 8.4 +/- 0.8 vs. 7.2 +/- 0.8 l/min, 42 +/- 6 vs. 35 +/- 4 ml x min(-1) x mmHg(-1), 1.71 +/- 0.18 vs. 1.51 +/- 0.15 l/min, respectively) but were not enhanced with hyperoxia. Oxygen extraction was elevated in the T vs. the UT thigh, whereas arteriovenous O2 difference tended to be higher (78 +/- 2 vs. 72 +/- 4%, P < 0.05; 160 +/- 8 vs. 154 +/- 11 ml/l, respectively; P = 0.098) but again were unaltered with hyperoxia. In conclusion, the present results demonstrate that the increase in quadriceps muscle O2 uptake with training is largely associated with increases in blood flow and O2 delivery, with smaller contribution from increases in O2 extraction. Furthermore, the elevation in peak muscle blood flow and vascular conductance with endurance training seems to be related to an enhanced vasodilatory capacity of the vasculature perfusing the quadriceps muscle that is unaltered by moderate hyperoxia.  相似文献   

3.
The aim of this study was to investigate the effects of endurance training on skeletal muscle hemodynamics and oxygen consumption. Seven healthy endurance-trained and seven untrained subjects were studied. Oxygen uptake, blood flow, and blood volume were measured in the quadriceps femoris muscle group by use of positron emission tomography and [15O]O2, [15O]H2O, and [15O]CO during rest and one-legged submaximal intermittent isometric exercise. The oxygen extraction fraction was higher (0.49 +/- 0.14 vs. 0.29 +/- 0.12; P = 0.017) and blood transit time longer (0.6 +/- 0.1 vs. 0.4 +/- 0.1 min; P = 0.04) in the exercising muscle of the trained compared with the untrained subjects. The flow heterogeneity by means of relative dispersion was lower for the exercising muscle in the trained (50 +/- 9%) compared with the untrained subjects (65 +/- 13%, P = 0.025). In conclusion, oxygen extraction is higher, blood transit time longer, and perfusion more homogeneous in endurance-trained subjects compared with untrained subjects at the same workload. These changes may be associated with improved exercise efficiency in the endurance-trained subjects.  相似文献   

4.
To further explore the limitations to maximal O(2) consumption (.VO(2 max)) in exercise-trained skeletal muscle, six cyclists performed graded knee-extensor exercise to maximum work rate (WR(max)) in hypoxia (12% O(2)), hyperoxia (100% O(2)), and hyperoxia + femoral arterial infusion of adenosine (ADO) at 80% WR(max). Arterial and venous blood sampling and thermodilution blood flow measurements allowed the determination of muscle O(2) delivery and O(2) consumption. At WR(max), O(2) delivery rose progressively from hypoxia (1.0 +/- 0.04 l/min) to hyperoxia (1.20 +/- 0.09 l/min) and hyperoxia + ADO (1.33 +/- 0.05 l/min). Leg .VO(2 max) varied with O(2) availability (0.81 +/- 0.05 and 0.97 +/- 0.07 l/min in hypoxia and hyperoxia, respectively) but did not improve with ADO-mediated vasodilation (0.80 +/- 0.09 l/min in hyperoxia + ADO). Although a vasodilatory reserve in the maximally working quadriceps muscle group may have been evidenced by increased leg vascular conductance after ADO infusion beyond that observed in hyperoxia (increased blood flow but no change in blood pressure), we recognize the possibility that the ADO infusion may have provoked vasodilation in nonexercising tissue of this limb. Together, these findings imply that maximally exercising skeletal muscle may maintain some vasodilatory capacity, but the lack of improvement in leg .VO(2 max) with significantly increased O(2) delivery (hyperoxia + ADO), with a degree of uncertainty as to the site of this dilation, suggests an ADO-induced mismatch between O(2) consumption and blood flow in the exercising limb.  相似文献   

5.
The interactions between exercise, vascular and metabolic plasticity, and aging have provided insight into the prevention and restoration of declining whole body and small muscle mass exercise performance known to occur with age. Metabolic and vascular adaptations to normoxic knee-extensor exercise training (1 h 3 times a week for 8 wk) were compared between six sedentary young (20 +/- 1 yr) and six sedentary old (67 +/- 2 yr) subjects. Arterial and venous blood samples, in conjunction with a thermodilution technique facilitated the measurement of quadriceps muscle blood flow and hematologic variables during incremental knee-extensor exercise. Pretraining, young and old subjects attained a similar maximal work rate (WR(max)) (young = 27 +/- 3, old = 24 +/- 4 W) and similar maximal quadriceps O(2) consumption (muscle Vo(2 max)) (young = 0.52 +/- 0.03, old = 0.42 +/- 0.05 l/min), which increased equally in both groups posttraining (WR(max), young = 38 +/- 1, old = 36 +/- 4 W, Muscle Vo(2 max), young = 0.71 +/- 0.1, old = 0.63 +/- 0.1 l/min). Before training, muscle blood flow was approximately 500 ml lower in the old compared with the young throughout incremental knee-extensor exercise. After 8 wk of knee-extensor exercise training, the young reduced muscle blood flow approximately 700 ml/min, elevated arteriovenous O(2) difference approximately 1.3 ml/dl, and increased leg vascular resistance approximately 17 mmHg x ml(-1) x min(-1), whereas the old subjects revealed no training-induced changes in these variables. Together, these findings indicate that after 8 wk of small muscle mass exercise training, young and old subjects of equal initial metabolic capacity have a similar ability to increase quadriceps muscle WR(max) and muscle Vo(2 max), despite an attenuated vascular and/or metabolic adaptation to submaximal exercise in the old.  相似文献   

6.
The effect of exercise-induced arterial hypoxemia (EIAH) on quadriceps muscle fatigue was assessed in 11 male endurance-trained subjects [peak O2 uptake (VO2 peak) = 56.4 +/- 2.8 ml x kg(-1) x min(-1); mean +/- SE]. Subjects exercised on a cycle ergometer at >or=90% VO2 peak) to exhaustion (13.2 +/- 0.8 min), during which time arterial O2 saturation (Sa(O2)) fell from 97.7 +/- 0.1% at rest to 91.9 +/- 0.9% (range 84-94%) at end exercise, primarily because of changes in blood pH (7.183 +/- 0.017) and body temperature (38.9 +/- 0.2 degrees C). On a separate occasion, subjects repeated the exercise, for the same duration and at the same power output as before, but breathed gas mixtures [inspired O2 fraction (Fi(O2)) = 0.25-0.31] that prevented EIAH (Sa(O2) = 97-99%). Quadriceps muscle fatigue was assessed via supramaximal paired magnetic stimuli of the femoral nerve (1-100 Hz). Immediately after exercise at Fi(O2) 0.21, the mean force response across 1-100 Hz decreased 33 +/- 5% compared with only 15 +/- 5% when EIAH was prevented (P < 0.05). In a subgroup of four less fit subjects, who showed minimal EIAH at Fi(O2) 0.21 (Sa(O2) = 95.3 +/- 0.7%), the decrease in evoked force was exacerbated by 35% (P < 0.05) in response to further desaturation induced via Fi(O2) 0.17 (Sa(O2) = 87.8 +/- 0.5%) for the same duration and intensity of exercise. We conclude that the arterial O2 desaturation that occurs in fit subjects during high-intensity exercise in normoxia (-6 +/- 1% DeltaSa(O2) from rest) contributes significantly toward quadriceps muscle fatigue via a peripheral mechanism.  相似文献   

7.
A functional evaluation of skeletal muscle oxidative metabolism during dynamic knee extension (KE) incremental exercises was carried out following a 35-day bed rest (BR) (Valdoltra 2008 BR campaign). Nine young male volunteers (age: 23.5 ± 2.2 yr; mean ± SD) were evaluated. Pulmonary gas exchange, heart rate and cardiac output (by impedance cardiography), skeletal muscle (vastus lateralis) fractional O(2) extraction, and brain (frontal cortex) oxygenation (by near-infrared spectroscopy) were determined during incremental KE. Values at exhaustion were considered "peak". Peak heart rate (147 ± 18 beats/min before vs. 146 ± 17 beats/min after BR) and peak cardiac output (17.8 ± 3.3 l/min before vs. 16.1 ± 1.8 l/min after BR) were unaffected by BR. As expected, brain oxygenation did not decrease during KE. Peak O(2) uptake was lower after vs. before BR, both when expressed as liters per minute (0.99 ± 0.17 vs. 1.26 ± 0.27) and when normalized per unit of quadriceps muscle mass (46.5 ± 6.4 vs. 56.9 ± 11.0 ml·min(-1)·100 g(-1)). Skeletal muscle peak fractional O(2) extraction, expressed as a percentage of the maximal values obtained during a transient limb ischemia, was lower after (46.3 ± 12.1%) vs. before BR (66.5 ± 11.2%). After elimination, by the adopted exercise protocol, of constraints related to cardiovascular O(2) delivery, a decrease in peak O(2) uptake and muscle peak capacity of fractional O(2) extraction was found after 35 days of BR. These findings suggest a substantial impairment of oxidative function at the muscle level, "downstream" with respect to bulk blood flow to the exercising muscles, that is possibly at the level of blood flow distribution/O(2) utilization inside the muscle, peripheral O(2) diffusion, and intracellular oxidative metabolism.  相似文献   

8.
The purpose of this study was to determine the effects of short-term (14-day) unilateral leg immobilization using a simple knee brace (60 degree flexion)- or crutch-mediated model on muscle function and morphology in men (M, n = 13) and women (W, n = 14). Isometric and isokinetic (concentric-slow, 0.52 rad/s and fast, 5.24 rad/s) knee extensor peak torque was determined at three time points (Pre, Day-2, and Day-14). At the same time points, magnetic resonance imaging was used to measure the cross-sectional area of the quadriceps femoris and dual-energy X-ray absorptiometry scanning was used to calculate leg lean mass. Muscle biopsies were taken from vastus lateralis at Pre and Day-14 for myosin ATPase and myosin heavy chain analysis. Women showed greater decreases (Pre vs. Day-14) compared with men in specific strength (N/cm2) for isometric [M = 3.1 +/- 13.3, W = 17.1 +/- 15.9%; P = 0.055 (mean +/- SD)] and concentric-slow (M = 4.7 +/- 11.3, W = 16.6 +/- 18.4%; P < 0.05) contractions. There were no immobilization-induced sex-specific differences in the decrease in quadriceps femoris cross-sectional area (M = 5.7 +/- 5.0, W = 5.9 +/- 5.2%) or leg lean mass (M = 3.7 +/- 4.2, W = 2.7 +/- 2.8%). There were no fiber-type transformations, and the decreases in type I (M = 4.8 +/- 5.0, W = 5.9 +/- 3.4%), IIa (M = 7.9 +/- 9.9, W = 8.8 +/- 8.0%), and IIx (M = 10.7 +/- 10.8, W = 10.8 +/- 12.1%) fiber areas were similar between sexes. These findings indicate that immobilization-induced loss of knee extensor muscle strength is greater in women compared with men despite a similar extent of atrophy at the myofiber and whole muscle levels after 14 days of unilateral leg immobilization. Furthermore, we have described an effective and safe knee immobilization method that results in reductions in quadriceps muscle strength and size.  相似文献   

9.
Previously, by measuring myoglobin-associated PO(2) (P(Mb)O(2)) during maximal exercise, we have demonstrated that 1) intracellular PO(2) is 10-fold less than calculated mean capillary PO(2) and 2) intracellular PO(2) and maximum O(2) uptake (VO(2 max)) fall proportionately in hypoxia. To further elucidate this relationship, five trained subjects performed maximum knee-extensor exercise under conditions of normoxia (21% O(2)), hypoxia (12% O(2)), and hyperoxia (100% O(2)) in balanced order. Quadriceps O(2) uptake (VO(2)) was calculated from arterial and venous blood O(2) concentrations and thermodilution blood flow measurements. Magnetic resonance spectroscopy was used to determine myoglobin desaturation, and an O(2) half-saturation pressure of 3.2 Torr was used to calculate P(Mb)O(2) from saturation. Skeletal muscle VO(2 max) at 12, 21, and 100% O(2) was 0.86 +/- 0.1, 1.08 +/- 0.2, and 1.28 +/- 0.2 ml. min(-1). ml(-1), respectively. The 100% O(2) values approached twice that previously reported in human skeletal muscle. P(Mb)O(2) values were 2.3 +/- 0.5, 3.0 +/- 0.7, and 4.1 +/- 0.7 Torr while the subjects breathed 12, 21, and 100% O(2), respectively. From 12 to 21% O(2), VO(2) and P(Mb)O(2) were again proportionately related. However, 100% O(2) increased VO(2 max) relatively less than P(Mb)O(2), suggesting an approach to maximal mitochondrial capacity with 100% O(2). These data 1) again demonstrate very low cytoplasmic PO(2) at VO(2 max), 2) are consistent with supply limitation of VO(2 max) of trained skeletal muscle, even in hyperoxia, and 3) reveal a disproportionate increase in intracellular PO(2) in hyperoxia, which may be interpreted as evidence that, in trained skeletal muscle, very high mitochondrial metabolic limits to muscle VO(2) are being approached.  相似文献   

10.
High-intensity exercise (> or =90% of maximal O(2) uptake) sustained to the limit of tolerance elicits expiratory muscle fatigue (EMF). We asked whether prior EMF affects subsequent exercise tolerance. Eight male subjects (means +/- SD; maximal O(2) uptake = 53.5 +/- 5.2 ml.kg(-1).min(-1)) cycled at 90% of peak power output to the limit of tolerance with (EMF-EX) and without (CON-EX) prior induction of EMF and for a time equal to that achieved in EMF-EX but without prior induction of EMF (ISO-EX). To induce EMF, subjects breathed against an expiratory flow resistor until task failure (15 breaths/min, 0.7 expiratory duty cycle, 40% of maximal expiratory gastric pressure). Fatigue of abdominal and quadriceps muscles was assessed by measuring the reduction relative to prior baseline values in magnetically evoked gastric twitch pressure (Pga(tw)) and quadriceps twitch force (Q(tw)), respectively. The reduction in Pga(tw) was not different after resistive breathing vs. after CON-EX (-27 +/- 5 vs. -26 +/- 6%; P = 0.127). Exercise time was reduced by 33 +/- 10% in EMF-EX vs. CON-EX (6.85 +/- 2.88 vs. 9.90 +/- 2.94 min; P < 0.001). Exercise-induced abdominal and quadriceps muscle fatigue was greater after EMF-EX than after ISO-EX (-28 +/- 9 vs. -12 +/- 5% for Pga(tw), P = 0.001; -28 +/- 7 vs. -14 +/- 6% for Q(tw), P = 0.015). Perceptual ratings of dyspnea and leg discomfort (Borg CR10) were higher at 1 and 3 min and at end exercise during EMF-EX vs. during ISO-EX (P < 0.05). Percent changes in limb fatigue and leg discomfort (EMF-EX vs. ISO-EX) correlated significantly with the change in exercise time. We propose that EMF impaired subsequent exercise tolerance primarily through an increased severity of limb locomotor muscle fatigue and a heightened perception of leg discomfort.  相似文献   

11.
To determine the effect of age on quadriceps muscle blood flow (QMBF), leg vascular resistance (LVR), and maximum oxygen uptake (QVO2 max), a thermal dilution technique was used in conjunction with arterial and venous femoral blood sampling in six sedentary young (19.8 +/- 1.3 yr) and six sedentary old (66.5 +/- 2.1 yr) males during incremental knee extensor exercise (KE). Young and old attained a similar maximal KE work rate (WRmax) (young: 25.2 +/- 2.1 and old: 24.1 +/- 4 W) and QVO2 max (young: 0.52 +/- 0.03 and old: 0.42 +/- 0.05 l/min). QMBF during KE was lower in old subjects by approximately 500 ml/min across all work rates, with old subjects demonstrating a significantly lower QMBF/W (old: 174 +/- 20 and young: 239 +/- 46 ml. min-1. W-1). Although the vasodilatory response to incremental KE was approximately 142% greater in the old (young: 0.0019 and old: 0.0046 mmHg. min. ml-1. W-1), consistently elevated leg vascular resistance (LVR) in the old, approximately 80% higher LVR in the old at 50% WR and approximately 40% higher LVR in the old at WRmax (young: 44.1 +/- 3.6 and old: 31.0 +/- 1.7 mmHg. min. ml-1), dictated that during incremental KE the LVR of the old subjects was never less than that of the young subjects. Pulse pressures, indicative of arterial vessel compliance, were approximately 36% higher in the old subjects across all work rates. In conclusion, well-matched sedentary young and old subjects with similar quadriceps muscle mass achieved a similar WRmax and QVO2 max during incremental KE. The old subjects, despite a reduced QMBF, had a greater vasodilatory response to incremental KE. Given that small muscle mass exercise, such as KE, utilizes only a fraction of maximal cardiac output, peripheral mechanisms such as consistently elevated leg vascular resistance and greater pulse pressures appear to be responsible for reduced blood flow persisting throughout graded KE in the old subjects.  相似文献   

12.
Maximal O2 delivery and O2 uptake (VO2) per 100 g of active muscle mass are far greater during knee extensor (KE) than during cycle exercise: 73 and 60 ml. min-1. 100 g-1 (2.4 kg of muscle) (R. S. Richardson, D. R. Knight, D. C. Poole, S. S. Kurdak, M. C. Hogan, B. Grassi, and P. D. Wagner. Am. J. Physiol. 268 (Heart Circ. Physiol. 37): H1453-H1461, 1995) and 28 and 25 ml. min-1. 100 g-1 (7.5 kg of muscle) (D. R. Knight, W. Schaffartzik, H. J. Guy, R. Predilleto, M. C. Hogan, and P. D. Wagner. J. Appl. Physiol. 75: 2586-2593, 1993), respectively. Although this is evidence of muscle O2 supply dependence in itself, it raises the following question: With such high O2 delivery in KE, are the quadriceps still O2 supply dependent at maximal exercise? To answer this question, seven trained subjects performed maximum KE exercise in hypoxia [0.12 inspired O2 fraction (FIO2)], normoxia (0.21 FIO2), and hyperoxia (1.0 FIO2) in a balanced order. The protocol (after warm-up) was a square wave to a previously determined maximum work rate followed by incremental stages to ensure that a true maximum was achieved under each condition. Direct measures of arterial and venous blood O2 concentration in combination with a thermodilution blood flow technique allowed the determination of O2 delivery and muscle VO2. Maximal O2 delivery increased with inspired O2: 1.3 +/- 0.1, 1.6 +/- 0.2, and 1.9 +/- 0.2 l/min at 0.12, 0.21, and 1.0 FIO2, respectively (P < 0.05). Maximal work rate was affected by variations in inspired O2 (-25 and +14% at 0.12 and 1.0 FIO2, respectively, compared with normoxia, P < 0.05) as was maximal VO2 (VO2 max): 1.04 +/- 0.13, 1. 24 +/- 0.16, and 1.45 +/- 0.19 l/min at 0.12, 0.21, and 1.0 FIO2, respectively (P < 0.05). Calculated mean capillary PO2 also varied with FIO2 (28.3 +/- 1.0, 34.8 +/- 2.0, and 40.7 +/- 1.9 Torr at 0.12, 0.21, and 1.0 FIO2, respectively, P < 0.05) and was proportionally related to changes in VO2 max, supporting our previous finding that a decrease in O2 supply will proportionately decrease muscle VO2 max. As even in the isolated quadriceps (where normoxic O2 delivery is the highest recorded in humans) an increase in O2 supply by hyperoxia allows the achievement of a greater VO2 max, we conclude that, in normoxic conditions of isolated KE exercise, KE VO2 max in trained subjects is not limited by mitochondrial metabolic rate but, rather, by O2 supply.  相似文献   

13.
A previously developed Krogh-type theoretical model was used to estimate capillary density in human skeletal muscle based on published measurements of oxygen consumption, arterial partial pressure of oxygen, and blood flow during maximal exercise. The model assumes that oxygen consumption in maximal exercise is limited by the ability of capillaries to deliver oxygen to tissue and is therefore strongly dependent on capillary density, defined as the number of capillaries per unit cross-sectional area of muscle. Based on an analysis of oxygen transport processes occurring at the microvascular level, the model allows estimation of the minimum number of straight, evenly spaced capillaries required to achieve a given oxygen consumption rate. Estimated capillary density values were determined from measurements of maximal oxygen consumption during knee extensor exercise and during whole body cycling, and they range from 459 to 1,468 capillaries/mm2. Measured capillary densities, obtained with either histochemical staining techniques or electron microscopy on quadriceps muscle biopsies from healthy subjects, are generally lower, ranging from 123 to 515 capillaries/mm2. This discrepancy is partly accounted for by the fact that capillary density decreases with muscle contraction and muscle biopsy samples typically are strongly contracted. The results imply that estimates of maximal oxygen transport rates based on capillary density values obtained from biopsy samples do not fully reflect the oxygen transport capacity of the capillaries in skeletal muscle.  相似文献   

14.
In order to evaluate hemodynamics and blood flow during rest-associated apnea in young elephant seals (Mirounga angustirostris), cardiac outputs (CO, thermodilution), heart rates (HR), and muscle blood flow (MBF, laser Doppler flowmetry) were measured. Mean apneic COs and HRs of three seals were 46% and 39% less than eupneic values, respectively (2.1+/-0.3 vs. 4.0+/-0.1 mL kg(-1) s(-1), and 54+/-6 vs. 89+/-14 beats min(-1)). The mean apneic stroke volume (SV) was not significantly different from the eupneic value (2.3+/-0.2 vs. 2.7+/-0.5 mL kg(-1)). Mean apneic MBF of three seals was 51% of the eupneic value. The decline in MBF during apnea was gradual, and variable in both rate and magnitude. In contrast to values previously documented in seals during forced submersions (FS), CO and SV during rest-associated apneas were maintained at levels characteristic of previously published values in similarly-sized terrestrial mammals at rest. Apneic COs of such magnitude and incomplete muscle ischemia during the apnea suggest that (1) most organs are not ischemic during rest-associated apneas, (2) the blood O(2) depletion rate is greater during rest-associated apneas than during FS, and (3) the blood O(2) store is not completely isolated from muscle during rest-associated apneas.  相似文献   

15.
We investigated arm perfusion and metabolism during upper body exercise. Eight average, fit subjects and seven rowers, mean +/- SE maximal oxygen uptake (VO2 max) 157 +/- 7 and 223 +/- 14 ml O2. kg(-0.73).min(-1), respectively, performed incremental arm cranking to exhaustion. Arm blood flow (ABF) was measured with thermodilution and arm muscle mass was estimated by dual-energy X-ray absorptiometry. During maximal arm cranking, pulmonary VO2 was approximately 45% higher in the rowers compared with the untrained subjects and peak ABF was 6.44 +/- 0.40 and 4.55 +/- 0.26 l/min, respectively (P < 0.05). The arm muscle mass for the rowers and the untrained subjects was 3.5 +/- 0.4 and 3.3 +/- 0.1 kg, i.e., arm perfusion was 1.9 +/- 0.2 and 1.4 +/- 0.1 l blood.kg(-1).min(-1), respectively (P < 0.05). The arteriovenous O2 difference was 156 +/- 7 and 120 +/- 8 ml/l, respectively, and arm VO2 was 0.98 +/- 0.08 and 0.60 +/- 0.04 l/min corresponding with 281 +/- 22 and 181 +/- 12 ml/kg, while arm O(2) diffusional conductance was 49.9 +/- 4.3 and 18.6 +/- 3.2 ml.min(-1).mmHg(-1), respectively (P < 0.05). Also, lactate release in the rowers was almost three times higher than in the untrained subjects (26.4 +/- 1.1 vs. 9.5 +/- 0.4 mmol/min, P < 0.05). The energy requirement of an approximately 50% larger arm work capacity after long-term arm endurance training is covered by an approximately 60% increase in aerobic metabolism and an almost tripling of the anaerobic capacity.  相似文献   

16.
We evaluated the hypothesis that net leg total FFA, LDL-C, and TG uptake and HDL-C release during moderate-intensity cycling exercise would be increased following endurance training. Eight sedentary men (26 +/- 1 yr, 77.4 +/- 3.7 kg) were studied in the postprandial state during 90 min of rest and 60 min of exercise twice before (45% and 65% V(O2 peak)) and twice after 9 wk of endurance training (55% and 65% posttraining V(O2 peak)). Measurements across an exercising leg were taken to be a surrogate for active skeletal muscle. To determine limb lipid exchange, femoral arterial and venous blood samples drawn simultaneously at rest and during exercise were analyzed for total and individual FFA (e.g., palmitate, oleate), LDL-C, HDL-C, and TG concentrations, and limb blood flow was determined by thermodilution. The transition from rest to exercise resulted in a shift from net leg total FFA release (-44 +/- 16 micromol/min) to uptake (193 +/- 49 micromol/min) that was unaffected by either exercise intensity or endurance training. The relative net leg release and uptake of individual FFA closely resembled their relative abundances in the plasma with approximately 21 and 41% of net leg total FFA uptake during exercise accounted for by palmitate and oleate, respectively. Endurance training resulted in significant changes in arterial concentrations of HDL-C (49 +/- 5 vs. 52 +/- 5 mg/dl, pre vs. post) and LDL-C (82 +/- 9 vs. 76 +/- 9 mg/dl, pre vs. post), but there was no net TG or LDL-C uptake or HDL-C release across the resting or active leg before or after endurance training. In conclusion, endurance training favorably affects blood lipoprotein profiles, even in young, healthy normolipidemic men, but muscle contractions per se have little effect on net leg LDL-C, or TG uptake or HDL-C release during moderate-intensity cycling exercise. Therefore, the favorable effects of physical activity on the lipid profiles of young, healthy normolipidemic men in the postprandial state are not attributable to changes in HDL-C or LDL-C exchange across active skeletal muscle.  相似文献   

17.
The objectives were to examine knee angle-, and gender-specific knee extensor torque output and quadriceps femoris (QF) muscle recruitment during maximal effort, voluntary contractions. Fourteen young adult men and 15 young adult women performed three isometric maximal voluntary contractions (MVC), in a random order, with the knee at 0 degrees (terminal extension), 10 degrees, 30 degrees, 50 degrees, 70 degrees, and 90 degrees flexion. Knee extensor peak torque (PT), and average torque (AT) were expressed in absolute (N m), relative (N m kg(-1)) and allometric-modeled (N m kg(-n)) units. Vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscle EMG signals were full-wave rectified and integrated over the middle 3 s of each contraction, averaged over the three trials at each knee angle, and normalized to the activity recorded at 0 degrees. Muscle recruitment efficiency was calculated as the ratio of the normalized EMG of each muscle to the allometric-modeled average torque (normalized to the values at 0 degrees flexion), and expressed as a percent. Men generated significantly greater knee extensor PT and AT than women in absolute, relative and allometric-modeled units. Absolute and relative PT and AT were significantly highest at 70 degrees, while allometric-modeled values were observed to increase significantly across knee joint angles 10-90 degrees. VM EMG was significantly greater than the VL and RF muscles across all angles, and followed a similar pattern to absolute knee extensor torque. Recruitment efficiency improved across knee joint angles 10-90 degrees and was highest for the VL muscle. VM recruitment efficiency improved more than the VL and RF muscles across 70-90 degrees flexion. The findings demonstrate angle-, and gender-specific responses of knee extensor torque to maximal-effort contractions, while superficial QF muscle recruitment was most efficient at 90 degrees, and less dependent on gender.  相似文献   

18.
This investigation evaluated regional differences in blood flow and oxygen consumption and their relationship in exercised muscle during recovery from exhaustive exercise. Five healthy men performed exhaustive one-legged cycling exercise. Positron emission tomography was used to measure blood flow, oxygen uptake, and oxygen extraction in the quadriceps femoris muscle before and after exercise. Regions of interest included five areas of the muscle (two proximal, one central, and two distal), which were evenly spaced across the muscle. Before exercise, blood flow and oxygen consumption decreased significantly (P < 0.05) in the direction from the proximal to the distal portions; blood flow declined from 2.0 +/- 0.5 to 1.4 +/- 0.3 ml x 100 g-1 x min-1, and oxygen consumption decreased from 0.21 +/- 0.04 to 0.17 +/- 0.02 ml.100 g-1x min-1. In contrast, these gradients in blood flow and oxygen consumption diminished during recovery after exercise. Consequently, there was a positive relationship between changes in blood flow and oxygen consumption in an exercised muscle during recovery after exercise (r = 0.963, P < 0.01). These changes became larger in the direction from proximal to distal portions: blood flow increased from 2.9 +/- 0.7 to 3.9 +/- 0.8 and oxygen consumption from 1.4 +/- 0.1 to 1.8 +/- 0.4 times resting values. These results suggest that hemodynamic variables are heterogeneous within a muscle both at rest and during recovery from exercise and that there is a systematic difference in these variables in the direction from proximal to distal regions within the quadriceps femoris muscle.  相似文献   

19.
The purpose of this investigation was to examine the effect of rhythmic tetanic skeletal muscle contractions on peak muscle perfusion by using spontaneously perfused canine gastrocnemii in situ. Simultaneous pulsatile blood pressures were measured by means of transducers placed in the popliteal artery and vein, and pulsatile flow was measured with a flow-through-type transit-time ultrasound probe placed in the venous return line. Two series of experiments were performed. In series 1, maximal vasodilation of the muscles' vascular beds was elicited by infusing a normal saline solution containing adenosine (29.3 mg/min) and sodium nitroprusside (180 microg/min) for 15 s and then simultaneously occluding both the popliteal artery and vein for 5 min. The release of occlusion initiated a maximal hyperemic response, during which time four tetanic contractions were induced with supramaximal voltage (6-8 V, 0.2-ms stimuli for 200-ms duration at 50 Hz, 1/s). In series 2, the muscles were stimulated for 3 min before the muscle contractions were stopped for a period of 3 s; stimulation was then resumed. The results of series 1 indicate that, although contractions lowered venous pressure, muscle blood flow was significantly reduced from 2,056 +/- 246 to 1,738 +/- 225 ml x kg(-1) x min(-1) when contractions were initiated and then increased significantly to 1,925 +/- 225 ml x kg(-1) x min(-1) during the first 5 s after contractions were stopped. In series 2, blood flow after 3 min of contractions averaged 1,454 +/- 149 ml x kg(-1) x min(-1). Stopping the contractions for 3 s caused blood flow to increase significantly to 1,874 +/- 172 ml x kg(-1) x min(-1); blood flow declined significantly to 1,458 +/- 139 ml x kg(-1) x min(-1) when contractions were resumed. We conclude that the mechanical action of rhythmic, synchronous, maximal isometric tetanic skeletal muscle contractions inhibits peak muscle perfusion during maximal and near-maximal vasodilation of the muscle's vascular bed. This argues against a primary role for the muscle pump in achieving peak skeletal muscle blood flow.  相似文献   

20.
Both tendon and peritendinous tissue show evidence of metabolic activity, but the effect of acute exercise on substrate turnover is unknown. We therefore examined the influence of acute exercise on glucose uptake in the patellar and quadriceps tendons during dynamic exercise in humans. Glucose uptake was measured in five healthy men in the patellar and quadriceps tendons and the quadriceps femoris muscle at rest and during dynamic knee-extension exercise (25 W) using positron emission tomography and [18F]-2-fluoro-2-deoxy-D-glucose ([18F]FDG). Glucose uptake index was calculated by dividing the tissue activity with blood activity of [18F]FDG. Exercise increased glucose uptake index by 77% in the patellar tendon (from 0.30 +/- 0.09 to 0.51 +/- 0.16, P = 0.03), by 106% in the quadriceps tendon (from 0.37 +/- 0.15 to 0.75 +/- 0.36, P = 0.02), and by 15-fold in the quadriceps femoris muscle (from 0.31 +/- 0.11 to 4.5 +/- 1.7, P = 0.005). The exercise-induced increase in the glucose uptake in neither tendon correlated with the increase in glucose uptake in the quadriceps muscle (r = -0.10, P = 0.87 for the patellar tendon and r = -0.30, P = 0.62 for the quadriceps tendon). These results show that tendon glucose uptake is increased during exercise. However, the increase in tendon glucose uptake is less pronounced than in muscle and the increases are uncorrelated. Thus tendon glucose uptake is likely to be regulated by mechanisms independently of those regulating skeletal muscle glucose uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号