共查询到20条相似文献,搜索用时 0 毫秒
1.
The influence of operational parameters on lysozyme refolding using size-exclusion chromatography 总被引:1,自引:0,他引:1
The influence of several parameters on the gel filtration refolding of hen egg white lysozyme from a starting concentration of 40 mg/ml was investigated. Refolding was found to be unaffected by temperature between 30 and 50°C, giving 100% recovered specific activity. At 10°C a 20% reduction in refolding yield was observed. Refolding was carried out successfully with both acrylamide (Sephacryl S100)- and dextran (Superdex 75)-based gel media. At the isoelectric pH of lysozyme, aggregation was suppressed in the column method, whereas protein aggregates were formed during dilution-based refolding. A number of compounds (carboxymethyl cellulose, dextran, sucrose) were added to the mobile phase to reduce the relative viscosity between the sample and mobile phase. Only sucrose, up to 20% (wt), was found not to interfere with lysozyme refolding. 相似文献
2.
Although the chaperon solvent plug was reported as a strategy to reduce aggregation before the column inlet in SEC (size-exclusion chromatography) protein refolding process, the appropriate position at which sample injected and the volume of the chaperon solvent plug have not been elucidated. Therefore, the detail of chaperon solvent plug design was investigated in this work. Our results indicated that, to ensure good performances in the SEC refolding process, the appropriate front and tail volumes of chaperon solvent plug should be slightly larger than the optimal values, which depend on the flow dispersion from the injector to the column inlet. However, with the front volume more than the optimum, it could have an adverse effect on activity recovery but not the mass recovery, while no effect at all if the tail volume exceeded the optimum. Furthermore, it might be economical to replace the eluent (refolding buffer) after the tail of chaperon solvent plug with a cheaper one. 相似文献
3.
Dr. Satoshi Yamaguchi Etsushi Yamamoto Teruhisa Mannen Teruyuki Nagamune Prof. Teruyuki Nagamune 《Biotechnology journal》2013,8(1):17-31
In laboratories and manufacturing settings, a rapid and inexpensive method for the preparation of a target protein is crucial for promoting resesrach in protein science and engineering. Inclusion-body-based protein production is a promising method because high yields are achieved in the upstream process, although the refolding of solubilized, unfolded proteins in downstream processes often leads to significantly lower yields. The most challenging problem is that the effective condition for refolding is protein dependent and is therefore difficult to select in a rational manner. Accordingly, considerable time and expense using trial-and-error approaches are often needed to increase the final protein yield. Furthermore, for certain target proteins, finding suitable conditions to achieve an adequate yield cannot be obtained by existing methods. Therefore, to convert such a troublesome refolding process into a routine one, a wide array of methods based on novel technologies and materials have been developed. These methods select refolding conditions where productive refolding dominates over unproductive aggregation in competitive refolding reactions. This review focuses on synthetic refolding additives and describes the concepts underlying the development of reported chemical additives or chemical-additive-b 相似文献
4.
5.
《Process Biochemistry》2014,49(7):1129-1134
Membrane technology is important to the development of modern biotechnology. It has the potential to efficiently refold protein at high concentration that is still a challenge for pharmaceutical protein produced from inclusion bodies. This paper dealt with the application of a polysulfone hollow fiber membrane to protein refolding using recombinant human granulocyte colony-stimulating factor (rhG-CSF) as a model protein. Compared with dilution refolding at protein concentration of 1.0 mg/mL, the crossflow membrane system led to a 16% increase in soluble protein recovery, and a 3.3-fold increase in specific bioactivity. Addition of PEG 6 K at 2 g/L could further improve the soluble protein recovery up to 57%, the specific bioactivity up to 2.2 × 108 IU/mL. Addition of dextran at 5 g/L could increase the soluble protein recovery up to 63.6%, the specific bioactivity up to 2.30 × 108 IU/mL. By gently and gradually removing denaturant, ultrafiltration membrane system was demonstrated to be very helpful for protein refolding at high concentration. Combining with hydrophilic macromolecular of PEG or dextran could further increase its efficiency. PEG was able to promote the refolding intermediate of rhG-CSF to transfer into the native structure; whereas dextran could enhance protein refolding mainly by weakening shear stress-induced protein aggregation. 相似文献
6.
7.
Inclusion body refolding processes play a major role in the production of recombinant proteins. Improvement of the size-exclusion chromatography refolding process was achieved by combining a decreasing urea gradient with an increasing arginine gradient (two gradients) for the refolding of NTA protein (a new thrombolytic agent) in this paper. Different refolding methods and different operating conditions in two gradients gel filtration process were investigated with regard to increasing the NTA protein activity recovery and inhibition of aggregation. The refolding of denatured NTA protein showed this method could significantly increase the activity recovery of protein at high protein concentration. The activity recovery of 37% was obtained from the initial NTA protein concentration up to 20 mg/ml. The conclusions presented in this study could also be applied to the refolding of lysozyme. 相似文献
8.
Andrea Bereczki Viola Horvth George Horvai 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2000,749(2):8
The measurement of the anti-epileptic drug phenobarbital from serum samples combining immunoassay and size-exclusion chromatography is presented. The immunoreaction is based on the competitive binding of the analyte (unlabelled phenobarbital) and the fluorescent-labelled phenobarbital to anti-phenobarbital antibodies. Mixing of the reagents and the immunoreaction takes place in a flow system. The products are separated on-line on a short gel chromatographic column and the fluorescence intensity of the marker is measured. The calibration curve shows good linearity in the range 5–80 μg/ml, corresponding to therapeutically relevant serum levels. Intra-day precision values are between 7.32 and 9.48%; the accuracy is between 0.97 and 9.43%. Inter-day precision and accuracy measured on 6 different days fall between 5.38 and 10.05% and −8.27 and −4.97%, respectively. The results obtained with the proposed method show a good correlation with those of other methods (radioimmunoassay and fluorescence polarisation immunoassay) already established in clinical laboratories. 相似文献
9.
Of the various protein refolding methods, direct dilution is one of the simplest and easiest for scaling up the refolding process. However, it requires a large amount of refolding buffer, often utilizes a number of chemicals, and results in a low final protein concentration. In this report, we demonstrate that reduced dithiothreitol (DTTred), a carryover from denaturation, is a crucial and adverse factor in lysozyme refolding. Accordingly, we proposed a method of using high concentration of oxidized glutathione (GSSG) in the refolding buffer to eliminate excess DTTred and aid in the refolding of lysozyme. The efficiency of this method is 84%, which resulted in a high final refolded protein concentration of 1.5 g/l and required only a low dilution factor (4×). Furthermore, compared with the traditional 50× direct dilution (resulting in a similar yield of 74%), the low dilution factor required much less GSSG and other constituents. 相似文献
10.
11.
《Biochimica et Biophysica Acta (BBA)/General Subjects》1998,1379(3):303-313
Silica-based packing materials induce non-specific interactions with proteins in aqueous media because of the nature of their surface, mainly silanol groups. Therefore, the silica surface has to be modified in order to be used as stationary phase for the High Performance Size-Exclusion Chromatography (HPSEC) of proteins. For this purpose, porous silica beads were coated with hydrophilic polymer gels (dextrans of different molecular weights) carrying a calculated amount of diethylaminoethyl groups (DEAE). Actually, as shown by HPSEC, these dextran modified supports minimize non-specific adsorption for proteins and pullulans in aqueous solution. Then, in order to change the pore size in response to temperature, temperature responsive polymer of poly(N-isopropylacrylamide) (PIPAAm) was introduced into the surface of dextran-DEAE on porous silica beads. The structure of these supports before and after modification was alternately studied by Scanning Electronic Microscopy (SEM) and Scanning Force Microscopy (SFM). An adsorption of radiolabelled albumin was performed to complete our study. Silica modifications by dextran-DEAE and PIPAAm improve the neutrality of the support and minimize the non-specific interactions between the solid support and proteins in solution. At low temperature, the support having PIPAAm exhibits a high resolution domain in HPSEC and finally permits a better resolution of proteins and pullulans. At higher temperature, hydrophobic properties of PIPAAm produce interactions with some proteins and trigger off a slight delay of their elution time. 相似文献
12.
Irvine GB 《Journal of biochemical and biophysical methods》2003,56(1-3):233-242
Gel filtration on soft gels has been employed for over 40 years for the separation, desalting and molecular weight estimation of peptides and proteins. Technical improvements have given rise to high-performance size-exclusion chromatography (HPSEC) on rigid supports, giving more rapid run times and increased resolution. Initially, these packings were more suitable for the separation of proteins than of peptides, but supports that operate in the fractionation range <10,000 Daltons (Da) are now available. In this report, HPSEC is described in relation to its application to peptides, especially regarding purification, estimation of molecular weight and study of molecular associations. 相似文献
13.
《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》1997,688(1):27-33
The separation of intact proteoglycans using high-performance liquid chromatography is not trivial because the high molarity denaturing buffers required to maintain proteoglycans in the disaggregated state create back-pressures higher than the limits of many HPLC systems. Until recently, low back-pressure requirements of HPLC size-exclusion columns precluded their use for the separation of intact proteoglycans. In this study we show that rapid size-exclusion chromatography is possible in 8 M urea buffers using a Dionex BioLC system equipped with a Bio-Rad BioSil Sec-400 column. This technique reduced the time required for size-exclusion chromatography of intact proteoglycans from approximately 18 h (Sepharose CL4B) to 25 min and in some cases improved resolution of the sample. 相似文献
14.
The shortening of the 3'-end poly(A) tail, also called deadenylation, is crucial to the regulation of mRNA processing, transportation, translation and degradation. The deadenylation process is achieved by deadenylases, which specifically catalyze the removal of the poly(A) tail at the 3'-end of eukaryotic mRNAs and release 5'-AMP as the product. To achieve their physiological functions, all deadenylases have numerous binding partners that may regulate their catalytic properties or recruit them into various protein complexes. To study the effects of various partners, it is important to develop new deadenylase assay that can be applied either in vivo or in vitro. In this research, we developed the deadenylase assay by the size-exclusion chromatography (SEC) method. The SEC analysis indicated that the poly(A) or oligo(A) substrate and the product AMP could be successfully separated and quantified. The enzymatic parameters of deadenylase could be obtained by quantifying the AMP generation. When using the commercial poly(A) as the substrate, a biphasic catalytic process was observed, which might correlate to the two distinct states of poly(A) in the commercial samples. Different lots of commercial poly(A) had dissimilar size distributions and were dissimilar in response to the degradation of deadenylase. The deadenylation pattern, processive or distributive, could also be investigated using the SEC assay by monitoring the status of the substrate and the generation kinetics of AMP and A2. The SEC assay was applicable to both simple samples using the purified enzyme and complex enzyme reaction conditions such as using protein mixtures or crude cell extracts as samples. The influence of solutes with absorption at 254 nm could be successfully eliminated by constructing the different SEC profiles. 相似文献
15.
C.Timothy Wehr Robert L. Cunico Gary S. Ott Virgie G. Shore 《Analytical biochemistry》1982,125(2):386-394
Apolipoproteins, extracted from human serum high-density lipoproteins, can be resolved and recovered with high yield from a preparative MicroPak TSK Type 3000SW size-exclusion column using Tris-buffered 6 m urea or 6 m guanidinium chloride mobile phases. Adequate resolution of some apolipoprotein pairs is only achieved at low flow velocities and low sample loads, necessitating repetitive injections of small amounts of material for preparative isolation. An analytical high-performance liquid chromatograph equipped with a simplified sample introduction scheme and low-pressure switching valves for fraction collection was used to isolate milligram quantities of HDL apolipoproteins. 相似文献
16.
Effect of column dimensions and flow rates on size-exclusion refolding of beta-lactamase 总被引:1,自引:0,他引:1
We have investigated the effect of changing the column diameter and length on the size exclusion chromatography (SEC) refolding of beta-lactamase from Escherichia coli-derived inclusion bodies (IBs). Inclusion bodies were recovered and solubilised in 6 M GdnHCl and 5 mM DTT. Up to 16 mg of denatured, solubilised beta-lactamase was loaded onto size exclusion columns packed with Sephacryl S-300 media (fractionation range: 10(4)-1.5 x 10(6) Da). beta-Lactamase was refolded by eluting the loaded sample with 1 M urea in 0.05 M phosphate buffer, pH 7 at 23 degrees C. The following columns were studied: 26 x 400, 16 x 400 and 26 x 200 mm, with a range of mobile phase flow rates from 0.33 to 4.00 ml/min. beta-Lactamase was successfully refolded in all three columns and at all flow rates studied. The beta-lactamase activity peak coincided with the major protein peak. Reducing the column diameter had little effect on refolding performance. The enzyme activity recovered was relatively independent of the mobile phase linear velocity. Reducing the column length gave a poorer resolution of the protein peaks, but the enzyme activity peaks were well resolved. Calculation of the partition coefficients for beta-lactamase activity showed that the 26 x 400 column gave the greatest refolding performance. 相似文献
17.
18.
Ideal size-exclusion chromatography separates molecules primarily on the basis of hydrodynamic volume. This is achieved only when the chromatographic support is neutral and the polarity nearly equal to that of the mobile phase. When this is not the case, the support surface may begin to play a role in the separation process. As the magnitude of surface contributions becomes larger, the deviation from the ideal increases. Because the separation mechanism is different than that of ideal size-exclusion chromatography, selectivity could be increased in nonideal size-exclusion chromatography. This paper explores the use of size-exclusion chromatography columns with mobile phases that cause proteins to exhibit slight deviations from the ideal size-exclusion mechanism. Although there are many ways to initiate nonideal size-exclusion behavior, the specific variable examined in this study is the influence of pH at low ionic strength. Individual proteins were chromatographed on SynChrom GPC-100, TSK-G2000SW, and TSK-G3000SW columns at low ionic strength. It was found that a protein could be selectively adsorbed, ion excluded, or chromatographed in an ideal size-exclusion mode by varying mobile-phase pH relative to the isoelectric point of the protein. In extreme cases, molecules could be induced either to elute in the void volume or beyond the volume of total permeation. It is postulated that these effects are the result of electrostatic interactions between proteins and surface silanols on the support surface. Optimization of size-exclusion separations relative to protein isoelectric points is discussed. 相似文献
19.
The kinetics of the hydrodynamic volume change accompanying the reversible unfolding of staphylococcal nuclease have been observed by size-exclusion chromatography at 4 degrees C and pH 7.0 using the denaturant guanidine hydrochloride. The observed chromatographic profiles have been simulated by a six-component unfolding/refolding mechanism using a consistent set of equilibrium and kinetic parameters. The native protein is an equilibrium mixture of the cis and trans isomers of the peptide bond preceding proline-117. The native conformation containing the cis isomer dominates the equilibrium mixture, is more stable, and unfolds more slowly at its transition midpoint. The denatured protein is an equilibrium mixture of at least four components, the cis/trans isomers of proline-117 and one of the five remaining prolines. The dominant refolding pathway is initiated from the denatured component containing the trans isomer of proline-117. The six-component mechanism is consistent with tryptophan fluorescence kinetic measurements of the wild-type protein and with chromatographic measurements of a mutant P117G protein. 相似文献
20.
Mette H. Ottøy Kjell M. Vårum Bjørn E. Christensen Marit W. Anthonsen Olav Smidsrød 《Carbohydrate polymers》1996,31(4):253-261
Two chitosan samples (fraction of acetylated units (FA) 0.15 and 0.52) were fractionated by preparative size exclusion chromatography (SEC). The molecular weights and molecular weight distributions of the fractions were analyzed by analytical size exclusion chromatography coupled to an on-line low angle laser light scattering detector and a differential refractive index detector (SEC-LALLS-DRI), and their intrinsic viscosities were determined. The exponent (a) of the Mark-Houwink-Kuhn-Sakurada (MHKS) equation was found to be 0.92 ± 0.07 and 1.1 ± 0.1, respectively, at I = 0.1 and pH 4.5. No variation in FA related to molecular weight was found. Reversible interaction between chitosans and different column packings strongly influenced the log M-V relationships. This interaction was generally most pronounced for the low-FA chitosan, suggesting that the protonated amino groups are involved. Ammonium acetate buffer reduced this effect and the use of a new type of SEC-packing seemed to eliminate it. The more highly acetylated chitosan also had a more pronounced tendency towards concentration dependent self-association, which most probably involve intermolecular hydrophobic interactions between the acetyl groups. 相似文献