首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently three isoforms of the mouse retinoic acid receptor (mRAR beta 1, mRAR beta 2, mRAR beta 3) have been described, generated from the same gene (Zelent et al., 1991). The isoforms differ in their 5'-untranslated (5'-UTR) and A region, but have identical B to F regions. The N-terminal variability of mRAR beta 1/beta 3 is encoded in the first two exons (E1 and E2), while exon E3 includes N-terminal sequences of the mRAR beta 2 isoform. We have determined the structure of the human RAR beta 2 gene, using a genomic library from K562 cells. The open reading frame is split into eight exons: E3 contains sequences for the N-terminal A region and E4 to E10 encode the common part of the receptor, including the DNA-binding domain and ligand-binding domain. Corresponding to other nuclear receptors, both 'zinc-fingers' of the DNA-binding domain are encoded separately in two exons and the ligand-binding domain is assembled from five exons.  相似文献   

2.
The RET proto-oncogene encodes a receptor tyrosine kinase required for development of the kidney and neural crest-derived cell types. Alternative splicing of the 3' exons of human RET results in three protein isoforms with distinct C-termini: RET9, RET51, and RET43. These RET isoforms show differential binding to downstream adapter molecules, suggesting they may have distinct signaling functions. We have characterized Ret 3' sequences in mouse and investigated alternative splicing of this region. We found that the organization of Ret 3' sequences is very similar to human RET. The mouse locus also has alternatively spliced C-terminal coding regions, and the sequences corresponding to RET9 and RET51 are highly conserved in both position and sequence with the human locus. Further, we compared the predicted C-terminal amino acids of RET9 and RET51 in seven vertebrate species, and found that they are well conserved. We have identified sequence encoding a putative ret43 isoform in mouse, however the predicted amino acid sequence showed low homology to human RET43. Our data suggest that RET isoforms are evolutionarily highly conserved over a broad range of species, which may indicate that each isoform has a distinct role in normal RET function.  相似文献   

3.
The complete nucleotide sequence of a genomic clone encoding the mouse skeletal alpha-actin gene has been determined. This single-copy gene codes for a protein identical in primary sequence to the rabbit skeletal alpha-actin. It has a large intron in the 5'-untranslated region 12 nucleotides upstream from the initiator ATG and five small introns in the coding region at codons specifying amino acids 41/42, 150, 204, 267, and 327/328. These intron positions are identical to those for the corresponding genes of chickens and rats. Similar to other skeletal alpha-actin genes, the nucleotide sequence codes for two amino acids, Met-Cys, preceding the known N-terminal Asp of the mature protein. Comparison of the nucleotide sequences of rat, mouse, chicken, and human skeletal muscle alpha-actin genes reveals conserved sequences (some not previously noted) outside of the protein-coding region. Furthermore, several inverted repeat sequences, partially within these conserved regions, have been identified. These sequences are not present in the vertebrate cytoskeletal beta-actin genes. The strong conservation of the inverted repeat sequences suggests that they may have a role in the tissue-specific expression of skeletal alpha-actin genes.  相似文献   

4.
5.
A gene encoding a flagellin protein of Campylobacter coli VC167 has been cloned and sequenced. The gene was identified in a pBR322 library by hybridization to a synthetic oligonucleotide probe corresponding to amino acids 4 to 9 of the N-terminal sequence obtained by direct chemical analysis (S. M. Logan, L. A. Harris, and T. J. Trust, J. Bacteriol. 169:5072-5077, 1987). The DNA was sequenced and shown to contain an open reading frame encoding a protein with a molecular weight of 58,945 and a length of 572 amino acids. The deduced amino acid sequence was identical to the published N-terminal amino acid sequence of VC167 flagellin and to four internal regions whose partial sequences were obtained by direct chemical analysis of two tryptic and two cyanogen bromide peptides of VC167 flagellin. The C. coli flagellin protein contains posttranslationally modified serine residues, most of which occur within a region containing two 9-amino-acid repeating peptides separated by 34 unique amino acids. Comparisons with the sequences of flagellins from other bacterial species revealed conserved residues at the amino- and carboxy-terminal regions. Hybridization data suggest the presence of a second flagellin copy located adjacent to the first on the VC167 chromosome.  相似文献   

6.
7.
8.
Whey acidic protein (WAP) is a major milk protein found in mouse and rat. Cloned WAP cDNAs from both species have been sequenced and the respective protein sequences have been deduced. Mouse and rat WAP (134 and 137 amino acids respectively) are acidic, cysteine rich proteins which contain a N-terminal signal peptide of 19 amino acids. Most of the cysteines are located in two clusters containing six cysteine residues each, arranged in an identical pattern. Comparison of the mouse and rat WAPs show that the signal peptide and the first cysteine domain are conserved to a greater extent than the rest of the protein. This result is reflected in the nucleotide sequence homology, where the regions coding for the signal peptide and cysteine domain I are the only regions where the rate of replacement substitution is lower than the rate of silent substitution. The 3' non-coding regions show a 91% conservation which is half the substitution rate for the coding region. This low rate of sequence divergence in the 3' non-translated region of the mRNA may indicate a functional importance for this region.  相似文献   

9.
We have sequenced rabbit cDNAs that encode one isoform of the alpha subunit and two isoforms of the beta subunit of phosphorylase kinase, in addition to the single isoform from fast skeletal muscle that has been characterized to date for each subunit. All these isoforms are generated by alternative RNA splicing. The alpha subunit sequence obtained from slow skeletal muscle (soleus) is characterized by an internal deletion of 59 amino acids. This deletion is predominant in mRNA from slow muscle, heart, and uterus and accounts for the smaller alpha subunit variant (alpha') characteristic of phosphorylase kinase purified from slow muscle and heart. The beta subunit mRNA can be differentially spliced at two sites. In all tissues (except skeletal muscle) that were analyzed, an internal segment encoding 28 amino acids of the muscle sequence is replaced by a homologous sequence of identical length, presumably through the use of mutually exclusive exons. In brain and some other tissues, the deduced N-terminal sequence of the beta subunit is also changed. This is achieved by an insertion into the mRNA sequence that interrupts the initial reading frame after 25 codons and starts a new reading frame, encoding a different N terminus of 18 amino acids. This modification probably affects the major regulatory phosphorylation site of the beta subunit.  相似文献   

10.
The complete nucleotide sequence of RNA beta from the type strain of barley stripe mosaic virus (BSMV) has been determined. The sequence is 3289 nucleotides in length and contains four open reading frames (ORFs) which code for proteins of Mr 22,147 (ORF1), Mr 58,098 (ORF2), Mr 17,378 (ORF3), and Mr 14,119 (ORF4). The predicted N-terminal amino acid sequence of the polypeptide encoded by the ORF nearest the 5'-end of the RNA (ORF1) is identical (after the initiator methionine) to the published N-terminal amino acid sequence of BSMV coat protein for 29 of the first 30 amino acids. ORF2 occupies the central portion of the coding region of RNA beta and ORF3 is located at the 3'-end. The ORF4 sequence overlaps the 3'-region of ORF2 and the 5'-region of ORF3 and differs in codon usage from the other three RNA beta ORFs. The coding region of RNA beta is followed by a poly(A) tract and a 238 nucleotide tRNA-like structure which are common to all three BSMV genomic RNAs.  相似文献   

11.
Two isoforms of protein phosphatase 1 may be produced from the same gene   总被引:8,自引:0,他引:8  
P T Cohen 《FEBS letters》1988,232(1):17-23
  相似文献   

12.
Synapsin 2 proteins are key elements of the synaptic machinery and still hold the centre stage in neuroscience research. Although fully sequenced at the nucleic acid level in mouse and rat, structural information on amino acid sequences and post-translational modifications (PTMs) is limited. Knowledge on protein sequences and PTMs, however, is mandatory for several purposes including conformational studies and the generation of antibodies. Hippocampal proteins from rat and mouse were extracted, run on two-dimensional gel electrophoresis and multi-enzyme digestion was carried out to generate peptides for mass spectrometrical analysis [nano-LC-ESI-(CID/ETD)-MS/MS]. As much as 12 synapsin 2 proteins (6 alpha and 6 beta isoforms) in the mouse and 13 synapsin 2 proteins (6 alpha and 7 beta isoforms) were observed in the rat. Protein sequences were highly identical to nucleic acid sequences, and only few amino acid exchanges probably representing polymorphisms or sequence conflicts were detected. Mouse and rat synapsins 2a differed in three amino acids, while rat and mouse synapsins 2b differed in two amino acids. As much as 13 phosphorylation sites were determined by MS/MS data in rat and mouse hippocampus and 5 were verified by phosphatase treatment. These findings are important for interpretation of previous results and design of future studies on synapsins.  相似文献   

13.
Alternative 5' exons in c-abl mRNA   总被引:57,自引:0,他引:57  
The cellular abl proto-oncogene encodes a protein-tyrosine kinase and is expressed in many cell types in two or three mRNA size species. Four types of mouse c-abl cDNAs have been cloned from 70Z/3 lymphoid cells that have different 5' sequences encoding predicted N-terminal regions of 20-45 amino acids. One of the four cDNAs has a predicted N-terminal sequence of met-gly-gln in common with the gag N terminus of v-abl. The 5' heterogeneity appears to be generated by alternative addition of 5' exons onto a common set of 3' exons. Alternative splicing occurs at the same site at which bcr sequences join to abl sequences in the Philadelphia chromosome translocation.  相似文献   

14.
The sequences of two Drosophila and one rabbit protein phosphatase (PP) 1 catalytic subunits were determined from their cDNA. The sequence of Drosophila PP1 alpha 1 was deduced from a 2.2-kb cDNA purified from an embryonic cDNA library, while that for Drosophila PP1 beta was obtained from overlapping clones isolated from both a head cDNA library and an eye imaginal disc cDNA library. The gene for Drosophila PP1 alpha 1 is at 96A2-5 on chromosome 3 and encodes a protein of 327 amino acids with a calculated molecular mass of 37.3 kDa. The gene for Drosophila PP1 beta is localized at 9C1-2 on the X chromosome and encodes a protein of 330 amino acids with a predicted molecular mass of 37.8 kDa. PP1 alpha 1 shows 96% amino acid sequence identity to PP1 alpha 2 (302 amino acids), an isoform whose gene is located in the 87B6-12 region of chromosome 3 [Dombrádi, V., Axton, J. M., Glover, D.M. Cohen, P.T.W. (1989) Eur. J. Biochem. 183, 603-610]. PP1 beta shows 85% identity to PP1 alpha 1 and PP1 alpha 2 over the 302 homologous amino acids. These results demonstrate that at least three genes are present in Drosophila that encode different isoforms of PP1. Drosophila PP1 alpha 1 and PP1 beta show 89% amino acid sequence identity to rabbit PP1 alpha (330 amino acids) [Cohen, P.T.W. (1988) FEBS Lett. 232, 17-23] and PP1 beta (327 amino acids), respectively, demonstrating that the structures of both isoforms are among the most conserved proteins known throughout the evolution of the animal kingdom. The presence of characteristic structural differences between PP1 alpha and PP1 beta, which have been preserved from insects to mammals, implies that the alpha and beta isoforms may have distinct biological functions.  相似文献   

15.
The genes encoding carbamoylphosphate synthetase from Pseudomonas aeruginosa PAO1 were cloned in Escherichia coli. Deletion and transposition analysis determined the locations of carA, encoding the small subunit, and carB, encoding the large subunit, on the chromosomal insert. The nucleotide sequence of carA and the flanking regions was determined. The derived amino acid sequence for the small subunit of carbamoylphosphate synthetase from P. aeruginosa exhibited 68% homology with its counterparts in E. coli and Salmonella typhimurium. The derived sequences in the three organisms were essentially identical in the three polypeptide segments that are conserved in glutamine amidotransferases but showed low homology at the amino- and carboxy-terminal regions. The amino-terminal amino acid sequences were determined for the large and small subunits. The first 15 amino acids of the large subunit were identical to those derived from the carB sequence. However, comparison of the derived sequence for carA with the amino-terminal amino acid sequence for the small subunit suggested that codons 5 to 8 are not translated. The DNA sequence for the region encompassing these four codons was confirmed by direct sequencing of chromosomal DNA after amplification by the polymerase chain reaction. The mRNA sequence was also deduced by in vitro synthesis of cDNA, enzymatic amplification, and sequencing, confirming that 12 nucleotides in the 5' terminal of carA are transcribed but are not translated.  相似文献   

16.
A gene encoding chitinases from Aeromonas sp. No. 10S-24 was cloned into Escherichia coli DH5α using pUC19, and its nucleotides were sequenced. The chitinase gene was clustered in ORFs (open reading frame) 1 to 4, in a 8-kb fragment of DNA. ORF-1 consisted of 1608 bp encoding 535 amino acid residues, and ORF-2 consisted of 1425 bp encoding 474 amino acid residues. ORF-3 was 1617 bp long and encodes a protein consisting of 538 amino acids. ORF-4 encodes 287 amino acids of the N-terminal region. The amino acid sequences of ORF-1 and ORF-3 share sequence homology with chitinase D from Bacillus circulans, and chitinase A and B from Streptomyces lividans. The amino acid sequence of ORF-2 shared sequence homology with chitinase II from Aeromonas sp. No. 10S-24, and chitinase from Saccharopolyspora erythraea. A region of the sequence starting from Ala-28 of the amino acid sequence of ORF-3 coincided with the N-terminal amino acid sequence of chitinase III from Aeromonas sp. No. 10S-24.  相似文献   

17.
The cell surface Fas antigen is a membrane-associated polypeptide which can mediate apoptosis. cDNA clones encoding the Fas antigen were isolated from a cDNA library constructed with mRNA from the mouse macrophage cell line BAM3. The nucleotide sequence and the deduced amino acid sequence of the mouse Fas antigen were 58.5 and 49.3% identical, respectively, to the corresponding sequences of human Fas antigen cDNA. The mouse Fas antigen consists of 306 amino acids with a calculated Mr of 34,971 and contains a single transmembrane domain which divides the molecule into extracellular and cytoplasmic domains. A 2.1-kb mRNA coding for the Fas antigen was detected in the mouse thymus, heart, liver, and ovary but not in brain and spleen. The expression of the Fas antigen gene in mouse fibroblast L929 and macrophage BAM3 cell lines was significantly induced by treatment with IFN-gamma but not by IFN-alpha/beta. Interspecific backcross analysis indicated that the gene coding for the Fas antigen is in the distal region of mouse chromosome 19.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号