共查询到20条相似文献,搜索用时 15 毫秒
1.
Spin echo nuclear magnetic resonance in cancerous tissue 总被引:1,自引:0,他引:1
2.
High-resolution 1H nuclear magnetic resonance (NMR) spectroscopy at 300 MHz has been used to study the behavior of human gastrin in aqueous solution. A large number of resonances have been assigned by analysis of one- and two-dimensional NMR spectra and the effects of pH and by comparison with the spectrum of des-less than Glu1-gastrin. In gastrin, the ratio of cis to trans conformations around the Gly-2 to Pro-3 peptide bond is 3:7. This is reflected in splitting of the resonances of several neighboring residues and of a residue distant in the sequence, Tyr-12. The pKa of Tyr-12 is 10.7. Sulfation of this residue perturbs the resonances of Tyr-12 and Gly-13 but has very little effect on the rest of the spectrum. A study of the temperature dependence shows that several perturbed resonances move toward their expected positions as the temperature is raised but with a linear dependence on temperature, consistent with a redistribution of populations among accessible local conformations rather than a cooperative conformational change. Addition of Na+ or Ca2+ causes only minor changes in the spectrum. The paramagnetic metal ion Co2+ produces a number of spectral changes, reflecting strong binding to at least one site involving the Glu residues and weaker binding to Asp-16. 相似文献
3.
The proton nuclear magnetic resonance spectrum of sulfmyoglobin cyanide was studied at 400 MHz. The position of a methyl-group resonance at low field is consistent with a chlorin-like structure for the prosthetic group. The proton NMR spectrum of the cyanide derivative of the purified prosthetic group which decomposes upon extraction from the protein was found to be the same as that of the cyanide derivative of the prosthetic group extracted from myoglobin and a sample prepared from hemin-Cl. 相似文献
4.
J. J. Bedford J. L. Harper J. P. Leader R. A. J. Smith 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1998,168(2):123-131
Methylamines are frequently present in high concentrations in biological samples, but their separation and quantification are difficult. Data presented show that methylamines commonly occurring in biological material can be uniquely identified and quantified by proton nuclear magnetic resonance spectroscopy by recording spectra at both neutral and acid pH. Use of a high sensitivity probe permits this analysis even in the presence of high water concentrations, allowing accurate quantification with minimum preparative technique. The method was tested on tissues of the dogfish. Trimethylamine oxide was found in amounts ranging from 42 mmol kg−1 fresh weight in liver, up to 115 mmol kg−1 fresh weight in heart. Betaine was found to range from 10 mmol kg−1 fresh weight in liver to 49 mmol kg−1 fresh weight in brain. Creatine was not found in heart or liver, but was present in body wall muscle and in brain. Further analysis using high-performance liquid chromatography allowed determination of urea/methylamine ratios, which ranged from 1.9 in liver to 3.7 in body wall muscle. Accepted: 7 October 1997 相似文献
5.
Valinomycin, incorporated in small unilamellar vesicles of perdeuterated dimyristoylphosphatidylcholine, reveals several well-resolved 1H-NMR resonances. These resonances were used to examine the location, orientation and ion-binding of membrane-bound valinomycin. The order of affinity of membrane-bound valinomycin for cations is Rb+ greater than K+ greater than Cs+ greater than Ba2+, and binding is sensitive to surface change. The exchange between bound and free forms is fast on the NMR time scale. The intrinsic binding constants, extrapolated to zero anion concentration, are similar to those determined in aqueous solution. Rb+ and K+ show 1:1 binding to valinomycin, whereas the stoichiometry of Cs+ and Ba2+ is not certain. Paramagnetic chemical shift reagents and nitroxide spin label relaxation probes were used to study the location and orientation of valinomycin in the membrane. Despite relatively fast exchange of bound cations, the time average location of the cation-free form of valinomycin is deep within the bilayer under the conditions of these experiments. Upon complexation to K+, valinomycin moves closer to the interfacial region. 相似文献
6.
Biotransformations monitored in situ by proton nuclear magnetic resonance spectroscopy 总被引:2,自引:0,他引:2
One-dimensional Fourier-transform proton nuclear magnetic resonance (1H-NMR) spectroscopy can be used to study biotransformations in situ, in vivo and in aqua (1H2O). Although an insensitive method, it rapidly provides solution-structural information of mixtures of diverse compounds that are used and formed during enzymic reactions and culture fermentations; the samples do not require any physical or chemical processing for analysis. The absolute stereochemistry of some reactions can also be determined, and assessments of metabolic fluxes made. This technique, with appropriate modifications, is of obvious value for on-line assessments of industrial fermentation processes. 相似文献
7.
C A Cowgill B G Nichols J W Kenny P Butler E M Bradbury R R Traut 《The Journal of biological chemistry》1984,259(24):15257-15263
Ribosomes and subunits from eukaryotic and prokaryotic sources were studied by high-resolution proton magnetic-resonance spectroscopy. If all ribosomal components are firmly bound within the particle, then only broad spectra would be expected. However, relatively sharp resonances were found both in ribosomal subunits and in 70 or 80 S ribosomes. The regions of these mobile protein domains have been partially assigned in Escherichia coli ribosomes. Large and small ribosomal subunits were treated to remove selectively proteins L7/12 and S1, respectively. Sharp proton magnetic resonance spectra were not observed for the stripped large subunit showing that proteins L7/12 comprise the flexible protein region and that there is little other flexibility in the stripped subunit. Complete removal of S1 from the small subunit greatly reduced but did not abolish the sharp protein resonance peaks, indicating that protein S1 contains a substantial flexible component but that other flexible components remain in the stripped small subunit. Evidence for generality of these features of ribosome organization is provided by similar studies on ribosomes from eukaryotic sources. 相似文献
8.
The interactions of gadolinium ion, lithium, and two substrate analogues, beta,gamma-imido-ATP (AMP-PNP) and tridentate CrATP, with the calcium ion transport adenosine triphosphatase (Ca2+-ATPase) of rabbit muscle sarcoplasmic reticulum have been examined by using 7Li+ NMR, water proton NMR, and Gd3+ EPR studies. Steady-state phosphorylation studies indicate that Gd3+ binds to the Ca2+ activator sites on the enzyme with an affinity which is approximately 10 times greater than that of Ca2+. 7Li+, which activates the Ca2+-ATPase in place of K+, has been found to be a suitable nucleus for probing the active sites of monovalent cation-requiring enzymes. 7Li+ nuclear relaxation studies demonstrate that the binding of Gd3+ ion to the two Ca2+ sites on Ca2+-ATPase increases the longitudinal relaxation rate (1/T1) of enzyme-bound Li+. The increase in 1/T1 was not observed in the absence of enzyme, indicating that the ATPase enhances the parmagnetic effect of Gd3+ on 1/T1 of 7Li+. Water proton relaxation studies also show that the ATPase binds Gd3+ at two tight-binding sites. Titrations of Gd3+ solutions with Ca2+-ATPase indicate that the tighter of the two Gd3+-binding sites (site 1) provides a ghigher enhancement of water relaxation than the other, weaker Gd3+ site (site 2) and also indicate that the average of the enhancements at the two sites is 7.4. These data, together with a titration of the ATPase with Gd3+ ion, yield enhancements, epsilonB, of 9.4 at site 1 and 5.4 at site 2. Analysis of the frequency dependence of 1/T1 of water indicates that the electron spin relaxation taus of Gd3+ is unusually long (2 X 10(-9) s) and suggests that the Ca2+-binding sites on the ATPase experience a reduced accessiblity of solvent water. This may indicate that the Ca2+ sites on the Ca2+-ATPase are buried or occluded within a cleft or channel in the enzyme. The analysis of the frequency dependence is also consistent with three exchangeable water protons on Gd3+ at site 1 and two fast exchanging water protons at site 2. Addition of the nonhydrolyzing substrate analogues, AMP-PNP and tridenate CrATP, to the enzyme-Gd3+ complex results in a decrease in the observed enhancement, with little change in the dipolar correlation time for Gd3+, consistent with a substrate-induced decrease in the number of fast-exchanging water protons on enzyme-bound Gd3+. From the effect of Gd3+ on 1/T1 of enzyme-bound Li+, Gd3+-Li+ separations of 7.0 and 9.1 A are calculated. On the assumption of a single Li+ site on the enzyme, these distances set an upper limit on the separation between Ca2+ sites on the enzyme of 16.1 A. 相似文献
9.
Varied magnetic field, multiple-pulse, and magic-angle spinning proton nuclear magnetic resonance study of muscle water.
下载免费PDF全文

The nuclear magnetic resonance linewidth of 1H in water of frog muscle was studied as a function of magnetic field strength and angle of orientation. The results suggest that the observed spectra are dominated by demagnetization field anisotropy and dispersion, but a small static dipolar interaction of the order of a few hertz man be present. Data from line-narrowing, multiple-pulse experiments also indicate the presence of a small dipolar broadening. 相似文献
10.
Maximilian Kühnle Diana Kreidler Karsten Holtin Harri Czesla Paul Schuler Volker Schurig Klaus Albert 《Chirality》2010,22(9):808-812
The hyphenation of enantioselective capillary gas chromatography and mass spectrometry is not always sufficient to distinguish between structural isomers, thus requiring peak identification by NMR spectroscopy. Here the first online coupling of enantioselective capillary gas chromatography with proton nuclear resonance spectroscopy is described for the unfunctionalized chiral alkane 2,4‐dimethylhexane resolved on octakis(6‐O‐methyl‐2,3‐di‐O‐pentyl)‐γ‐cyclodextrin at 60°C. NMR allows constitutional and configurational isomers (diastereomers and enantiomers) to be distinguished. Enantiomers display identical spectra at different retention times, which enable an indirect identification of these unfunctionalized alkanes. The presented method is still at an early development stage, and will require instrumental optimization in the future. Chirality 2010. © 2010 Wiley‐Liss, Inc. 相似文献
11.
Factors affecting proton magnetic resonance linewidths of water in several rat tissues 总被引:1,自引:0,他引:1
R E Block 《FEBS letters》1973,34(1):109-112
12.
Sodium-23 magnetic resonance was performed on four types of cancers and six types of normal tissues of rats and mice. The spin-lattice relaxation time of the tumors was generally longer than that of the normal tissues, with the most marked difference occurring between rat liver (T1 = 6.5 msec) and Novikoff hepatoma (T1 =23.7 msec). Estimation of tissue sodium from the signal intensity of the resonance indicated that all four types of tumors contained more sodium than any of the normal tissues. 相似文献
13.
14.
The high-resolution one- and two-dimensional proton nuclear magnetic resonance (1H-NMR) characterization of seminolipid from bovine spermatozoa is presented. The 1H-NMR data was confirmed by gas-liquid chromatography-mass spectrometric analysis of the partially methylated alditol acetates of the sugar unit, mild alkaline methanolysis of the glyceryl ester, mobility on normal phase and diphasic thin-layer chromatography (HPTLC), and fast atom bombardment mass spectrometry (FAB-MS). The structure of the molecule corresponds to 1-O-hexadecyl-2-O-hexadecanoyl-3-O-beta-D-(3'-sulfo)-galactopyranosyl- sn-glycerol. 相似文献
15.
High-resoluiton proton nuclear magnetic resonance spectroscopy at 250 MHz has been used to investigate sickle cell hemoglobin. The hyperfine shifted, the ring-current shifted, and the exchangeable proton resonances suggest that the heme environment and the subunit interfaces of the sickle cell hemoglobin molecule are normal. These results suggest that the low oxygen affinity in sickle cell blood is not due to conformational alterations in the heme environment or the subunit interfaces. The C-2 proton resonances of certain histidyl residues can serve as structural probes for the surface conformation of the hemoglobin molecule. Several sharp resonances in sickle cell hemoglobin are shifted upfield from their positions in normal adult hemoglobin. These upfield shifts, which are observed in both oxy and deoxy forms of the molecule under various experimental conditions, suggest that some of the surface residues of sickle cell hemoglobin are altered and they may be in a more hydrophobic environment as compared with that of normal human adult hemoglobin. These differences in surface conformation are pH and ionic strength specific. In particular, upon the addition of organic phosphates to normal and sickle cell hemoglobin samples, the differences in their aromatic proton resonances diminish. These changes in the surface conformation may, in part, be responsible for the abnormal properties of sickle cell hemoglobin. 相似文献
16.
M O Longas 《Analytical biochemistry》1990,187(2):355-358
The degree of galactosamine N-acetylation, iduronic acid composition, and total uronic acid/hexosamine ratios of the three dermatan sulfates of human skin, DS18, DS28, and DS35 (M. O. Longas et al. (1987) Carbohydr. Res. 159, 127-136), were determined by Fourier transform, proton nuclear magnetic resonance (FT 1H NMR) spectroscopy. Analysis of DS of varying ages was conducted at 400 MHz and 60 degrees C. Chemical shifts for H-1, H-2, H-4, and H-5 of L-IdUA were independent of those for the respective protons of D-GalNAc and D-GlcUA. The resonance intensities of H-1 and acetamido methyl protons of D-GalNac did not display the expected 1:3 ratios. Therefore, their integration values were employed to estimate the percentage N-acetylation (N-CH3/3 H-1) which was corroborated chemically. The L-IdUA content, relative to total uronic acid, was calculated from signal intensities of H-1 of L-IdUA and D-GlcUA and ascertained by quantitative chemical methods. Total uronic acid/hexosamine ratios were determined from both 1H NMR spectroscopy and chemical analyses. The data show the following N-acetylation (N-CH3/3 H-1) of galactosamine in DS:DS18, 61-72% between 17 and 60 years, unaffected by senescence; DS28, 78-86% with no age-related trend; DS35, 101% at 19 years. Furthermore, in all ages investigated, the percentage (wt/wt) L-IdUA relative to total uronic acid was 42-44% for DS18 and 37-40% for DS28. At age 19 years, DS35 had a 29% (wt/wt) L-IdUA. The total uronic acid/hexosamine ratios for DS18 and DS28 varied from 1.40:1.0 to 1.70:1.0 irrespective of age. 相似文献
17.
18.
Proton NMR studies at 250 MHz showed that ribofuranosyl and 2-deoxyribofuranosyl derivatives of N2-(p-n-butylphenyl)guanine (BuPG) favored the C2'-endo (S) sugar pucker and the gg exocyclic group rotamer, although less so than guanosine and 2'-deoxyguanosine themselves. The correlation calculated between C3'-endo (N) and gg conformational states in these compounds may result from destabilization of syn glycosidic bond conformers by the bulky N2 substituent. Results for a bis(ribofuranosyl) derivative of BuPG showed a strong correlation between N and gg states in both sugar rings, suggesting that both rings are anti and are stabilized by intramolecular hydrogen bonding between C3'-O and H8. 相似文献
19.
Dallas L. Rabenstein Anvarhusein A. Isab Webe Kadima P. Mohanakrishnan 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1983,762(4):531-541
The binding of Cd2+ by molecules in the intracellular region of human erythrocytes has been studied by 1H-NMR spectroscopy. From changes in spin-echo Fourier transform NMR spectra for both intact and hemolyzed erythrocytes to which CdCl2 was added, direct evidence was obtained for the binding of Cd2+ by intracellular glutathione and hemoglobin. Time-courses were measured by 1H-NMR for the uptake of Cd2+ by intact erythrocytes in saline/glucose solution and in whole blood. In both cases, the uptake, as indicated by changes in the 1H-NMR spectrum for intracellular glutathione, plateaus after about 30 min. The effectiveness of the disodium salt of EDTA and of various thiol-chelating agents for releasing glutathione from its Cd2+ complexes in hemolyzed erythrocytes was also studied. EDTA was found to be more effective than thiols, and dithiols more effective than monothiols. 相似文献
20.
Carbon-13 and proton nuclear magnetic resonance of unsonicated model and mitochondrial membranes 总被引:5,自引:0,他引:5
Proton nuclear magnetic resonance (PMR) spectra at 270 MHz of aqueous dispersions of nonsonicated egg lecithin, dipalmitoyl lecithin, egg lecithin-cholesterol (1 : 1) and dipalmitoyl lecithin-cholesterol (1 : 1), together with PMR spectra of mitochondrial membranes and their extracted lipids, have been obtained.Carbon-13 nuclear magnetic resonance (CMR) spectra at 25.2 MHz of egg lecithin, egg lecithin-cholesterol (1 : 1) and sphingomyelin, together with CMR spectra of chloroplast and mitochondrial membranes, and erythrocyte ghosts, have also been obtained. The results obtained using CMR appear very promising for further study of intact membrane structure.It is suggested, on the basis of CMR evidence, that the proteins in mitochondrial membranes may be considerably less mobile than the lipids. 相似文献