首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Lafora disease, a progressive myoclonus epilepsy, is an autosomal recessive disease caused in approximately 80% of cases by mutation of the EPM2A gene, which encodes a dual specificity protein phosphatase called laforin. In addition to its phosphatase domain, laforin contains an N-terminal carbohydrate-binding domain (CBD). Mouse laforin was expressed as an N-terminally polyHis tagged protein in Escherichia coli and purified close to homogeneity. The enzyme was active towards p-nitrophenylphosphate (50-80mmol/min/mg, K(m) 4.5mM) with maximal activity at pH 4.5. Laforin binds to glycogen, as previously shown, and caused potent inhibition, half maximally at approximately 1mug/ml. Less branched glucose polymers, amylopectin and amylose, were even more potent, with half maximal inhibition at 10 and 100ng/ml, respectively. With all polysaccharides, however, inhibition was incomplete and laforin retained 20-30% of its native activity at high polysaccharide concentrations. Glucose and short oligosaccharides did not affect activity. Substitution of Trp32 in the CBD by Gly, a mutation found in a patient, caused only a 30% decrease in laforin activity but abolished binding to and inhibition by glycogen, indicating that impaired glycogen binding is sufficient to cause Lafora disease.  相似文献   

2.
Laforin, encoded by the EPM2A gene, is a dual specificity protein phosphatase that has a functional glycogen-binding domain. Mutations in the EPM2A gene account for around half of the cases of Lafora disease, an autosomal recessive neurodegenerative disorder, characterized by progressive myoclonus epilepsy. The hallmark of the disease is the presence of Lafora bodies, which contain polyglucosan, a poorly branched form of glycogen, in neurons and other tissues. We examined the level of laforin protein in several mouse models in which muscle glycogen accumulation has been altered genetically. Mice with elevated muscle glycogen have increased laforin as judged by Western analysis. Mice completely lacking muscle glycogen or with 10% normal muscle glycogen had reduced laforin. Mice defective in the GAA gene encoding lysosomal alpha-glucosidase (acid maltase) overaccumulate glycogen in the lysosome but did not have elevated laforin. We propose, therefore, that laforin senses cytosolic glycogen accumulation which in turn determines the level of laforin protein.  相似文献   

3.
The solubility of glycogen, essential to its metabolism, is a property of its shape, a sphere generated through extensive branching during synthesis. Lafora disease (LD) is a severe teenage-onset neurodegenerative epilepsy and results from multiorgan accumulations, termed Lafora bodies (LB), of abnormally structured aggregation-prone and digestion-resistant glycogen. LD is caused by loss-of-function mutations in the EPM2A or EPM2B gene, encoding the interacting laforin phosphatase and malin E3 ubiquitin ligase enzymes, respectively. The substrate and function of malin are unknown; an early counterintuitive observation in cell culture experiments that it targets laforin to proteasomal degradation was not pursued until now. The substrate and function of laforin have recently been elucidated. Laforin dephosphorylates glycogen during synthesis, without which phosphate ions interfere with and distort glycogen construction, leading to LB. We hypothesized that laforin in excess or not removed following its action on glycogen also interferes with glycogen formation. We show in malin-deficient mice that the absence of malin results in massively increased laforin preceding the appearance of LB and that laforin gradually accumulates in glycogen, which corresponds to progressive LB generation. We show that increasing the amounts of laforin in cell culture causes LB formation and that this occurs only with glycogen binding-competent laforin. In summary, malin deficiency causes increased laforin, increased laforin binding to glycogen, and LB formation. Furthermore, increased levels of laforin, when it can bind glycogen, causes LB. We conclude that malin functions to regulate laforin and that malin deficiency at least in part causes LB and LD through increased laforin binding to glycogen.  相似文献   

4.
Laforin, encoded by the EPM2A gene, by sequence is a member of the dual specificity protein phosphatase family. Mutations in the EPM2A gene account for around half of the cases of Lafora disease, an autosomal recessive neurodegenerative disorder, characterized by progressive myoclonus epilepsy. The hallmark of the disease is the presence of Lafora bodies, which contain polyglucosan, a poorly branched form of glycogen, in neurons, muscle and other tissues. Glycogen metabolizing enzymes were analyzed in a transgenic mouse over-expressing a dominant negative form of laforin that accumulates Lafora bodies in several tissues. Skeletal muscle glycogen was increased 2-fold as was the total glycogen synthase protein. However, the -/+glucose-6-P activity of glycogen synthase was decreased from 0.29 to 0.16. Branching enzyme activity was increased by 30%. Glycogen phosphorylase activity was unchanged. In whole brain, no differences in glycogen synthase or branching enzyme activities were found. Although there were significant differences in enzyme activities in muscle, the results do not support the hypothesis that Lafora body formation is caused by a major change in the balance between glycogen elongation and branching activities.  相似文献   

5.
The Cdc14 protein encodes a dual-specificity protein phosphatase which functions in late mitosis, and considerable genetic evidence suggests a role in DNA replication. We find that cdc14 mutants arrested in late mitosis maintain persistent levels of mitotic kinase activity, suggesting that Cdc14 controls inactivation of this kinase. Overexpression of Sic1, a cyclin-dependent protein kinase inhibitor, is able to suppress telophase mutants such as dbf2, cdc5 and cdc15, but not cdc14. It does, however, force cdc14-arrested cells into the next cell cycle, in which an apparently normal S phase occurs as judged by FACS and pulsed-field gel electrophoretic analysis. Furthermore, in a promoter shut-off experiment, cells lacking Cdc14 appear to carry out a normal S phase. Thus Cdc14 functions mainly in late mitosis and it has no essential role in S phase. Received: 9 January 1998 / Accepted: 22 January 1998  相似文献   

6.
7.
Lafora progressive myoclonus epilepsy [LD (Lafora disease)] is a fatal autosomal recessive neurodegenerative disorder caused by loss-of-function mutations in either the EPM2A gene, encoding the dual-specificity phosphatase laforin, or the EPM2B gene, encoding the E3-ubiquitin ligase malin. Previously, we and others showed that laforin and malin form a functional complex that regulates multiple aspects of glycogen metabolism, and that the interaction between laforin and malin is enhanced by conditions activating AMPK (AMP-activated protein kinase). In the present study, we demonstrate that laforin is a phosphoprotein, as indicated by two-dimensional electrophoresis, and we identify Ser(25) as the residue involved in this modification. We also show that Ser(25) is phosphorylated both in vitro and in vivo by AMPK. Lastly, we demonstrate that this residue plays a critical role for both the phosphatase activity and the ability of laforin to interact with itself and with previously established binding partners. The results of the present study suggest that phosphorylation of laforin-Ser(25) by AMPK provides a mechanism to modulate the interaction between laforin and malin. Regulation of this complex is necessary to maintain normal glycogen metabolism. Importantly, Ser(25) is mutated in some LD patients (S25P), and our results begin to elucidate the mechanism of disease in these patients.  相似文献   

8.
Intracellular signaling pathways and their relationship to malignant progression have become a major focus of cancer biology. The dual-specificity phosphatase (DSP) family is a more recently identified family of intracellular signaling modulators. We have identified a novel protein phosphatase with a well-conserved DSP catalytic domain containing the DSP catalytic motif, xHCxxGxSRS, and mitogen-activated protein kinase phosphatase (MKP) motif, AYLM. Because of these unique characteristics, the protein was named mitogen-activated protein kinase phosphatase-8 (MKP-8). This protein is approximately 20kDa in size and mainly localizes to the nuclear compartment of the cell. MKP-8 is expressed in embryonal cancers (retinoblastoma, neuroepithelioma, and neuroblastoma) and has limited expression in normal tissues. MKP-8 displays significant phosphatase activity that is inhibited by a cysteine to serine substitution in the catalytic domain. When co-expressed with activated MAPKs, MKP-8 is able to inhibit p38 kinase phosphorylation and downstream activity.  相似文献   

9.
《Autophagy》2013,9(4):701-703
Lafora disease (LD), a fatal neurodegenerative disorder characterized by intracellular inclusions called Lafora bodies (LBs), is caused by recessive loss-of-function mutations in the genes encoding either laforin or malin. Previous studies suggested a role of these proteins in regulating glycogen biosynthesis, in glycogen dephosphorylation and in the modulation of intracellular proteolytic systems. However, the contribution of each of these processes to LD pathogenesis is unclear. Here we review our recent finding that dysfunction of autophagy is a common feature of both laforin- and malin-deficient mice, preceding other pathological manifestations. We propose that autophagy plays a primary role in LD pathogenesis and is a potential target for its treatment.  相似文献   

10.
11.
AgaXa is a thermostable β-agarase from the agar-degrading bacterium Catenovulum sp. X3. To further understand the mechanism of protein stabilization of AgaXa, several mutants were generated by random and site-directed mutagenesis, and they were subsequently screened by analysing their enzymatic activity and thermostability. Four mutants (V197D, P259H, C442S and C528S) were found for which the enzyme activity and thermostability were significantly decreased. Moreover, secondary structures determined by circular dichroism (CD) showed that mutants V197D and P259H presented a higher percentage of α-helix but fewer β-strands than wild-type (WT) AgaXa. On the contrary, no significant changes were observed in the secondary structures of mutants C442S and C528S. Through the treatment by proteinase K, different digested profiles were generated from mutants V197D and P259H when compared to WT, and mutants C442S and C528S was observed with more digested protein fragments. These results indicate that the enzymatic activity and stability of AgaXa is mainly related to its hydrophobic structure and disulphide bonds. Furthermore, carbohydrate-binding ability was also analysed for the mutants of N- and C-terminal deletions, and the results showed that agarose binding capability was not changed, indicating that the carbohydrate-binding module is probably located in the middle of the β-agarase AgaXa.  相似文献   

12.
Approximately 90% of cases of Lafora disease, a fatal teenage-onset progressive myoclonus epilepsy, are caused by mutations in either the EPM2A or the EPM2B genes that encode, respectively, a glycogen phosphatase called laforin and an E3 ubiquitin ligase called malin. Lafora disease is characterized by the formation of Lafora bodies, insoluble deposits containing poorly branched glycogen or polyglucosan, in many tissues including skeletal muscle, liver, and brain. Disruption of the Epm2b gene in mice resulted in viable animals that, by 3 months of age, accumulated Lafora bodies in the brain and to a lesser extent in heart and skeletal muscle. Analysis of muscle and brain of the Epm2b−/− mice by Western blotting indicated no effect on the levels of glycogen synthase, PTG (type 1 phosphatase-targeting subunit), or debranching enzyme, making it unlikely that these proteins are targeted for destruction by malin, as has been proposed. Total laforin protein was increased in the brain of Epm2b−/− mice and, most notably, was redistributed from the soluble, low speed supernatant to the insoluble low speed pellet, which now contained 90% of the total laforin. This result correlated with elevated insolubility of glycogen and glycogen synthase. Because up-regulation of laforin cannot explain Lafora body formation, we conclude that malin functions to maintain laforin associated with soluble glycogen and that its absence causes sequestration of laforin to an insoluble polysaccharide fraction where it is functionally inert.  相似文献   

13.
CDC25 enzymes are dual-specificity phosphatases involved in the regulation of the cell cycle. No CDC25 enzymes have been described in higher plant organisms. We report here the characterization of an Arabidopsis thaliana CDC25 enzyme, constituted by a sole catalytic domain and devoid of the N-terminal regulatory region found in the human CDC25. We describe the recombinant expression in Escherichia coli of the Arath;CDC25 and its purification for activity assay and structure determination by NMR. The recombinant enzyme has a tyrosine phosphatase activity towards an artificial substrate, a NMR characterization equally concludes to its correct folding. The secondary structure of the protein was predicted on the basis of the assigned chemical shift of (1)H, (15)N, and (13)C backbone atoms of the protein. The presence of a metal ion in the C-terminus of this new protein points to a zinc finger, and sequence homology indicates that this new structural element might be conserved in related plant homologs.  相似文献   

14.
We have identified an interacting partner protein (encoded by the human EPM2AIP1 gene (approved symbol)) for laforin, the product of the EPM2A gene, which is mutated in an autosomal recessive form of adolescent progressive myoclonus epilepsy. The EPM2AIP1 gene was identified in a screen for laforin-interacting proteins with a human brain cDNA library using the yeast two-hybrid system. The specificity of the interaction was confirmed by coimmunoprecipitation of in vivo-transfected protein and by using EPM2A deletion constructs. Subcellular colocalization of laforin and EPM2AIP1 protein was also demonstrated. The human EPM2AIP1 gene, corresponding to the KIAA0766 cDNA clone in the databases, was characterized and shown, like EPM2A, to be ubiquitously expressed. The gene, which comprises one large exon 1824 nucleotides in length and has alternative 3' untranslated regions, maps to human chromosome 3p22.1. The function is currently not known and extensive analyses do not reveal any homology to other proteins or any obvious structural motifs. Because genetic heterogeneity in Lafora disease has been described, mutational analysis of the EPM2AIP1 gene was performed on non-EPM2A patients, but no mutations were found. The identification of this first binding partner for laforin promises to be an important step toward unraveling the underlying pathogenesis of this severest form of teenage-onset epilepsy.  相似文献   

15.
Dual-specificity protein phosphatases participate in signal transduction pathways inactivating mitogen-activated protein kinases (MAP kinases). These signaling pathways are of critical importance in the regulation of numerous biological processes, including cell proliferation, differentiation and development. The social ameba Dictyostelium discoideum harbors 14 genes coding for proteins containing regions very similar to the dual-specificity protein phosphatase domain. One of these genes, mkpB, additionally codes for a region similar to the Rhodanase domain, characteristic of animal MAP kinase-phosphatases, in its N-terminal region. Cells that over-express this gene show increased protein phosphatase activity. mkpB is expressed in D. discoideum ameba at growth but it is greatly induced at 12h of multicellular development. Although it is expressed in all the cells of developmental structures, mkpB mRNA is enriched in cells with a distribution typical of anterior-like cells. Cells that express a catalytically inactive mutant of MkpB grow and aggregate like wild-type cells but show a greatly impaired post-aggregative development. In addition, the expression of cell-type specific genes is very delayed, indicating that this protein plays an important role in cell differentiation and development. Cells expressing the MkpB catalytically inactive mutant show increased sensitivity to cisplatin, while cells over-expressing wild type MkpB, or MkpA, proteins or mutated in the MAP kinase erkB gene are more resistant to this chemotherapeutic drug, as also shown in human tumor cells.  相似文献   

16.
Wu Q  Gu S  Dai J  Dai J  Wang L  Li Y  Zeng L  Xu J  Ye X  Zhao W  Ji C  Xie Y  Mao Y 《Biochimica et biophysica acta》2003,1625(3):296-304
Dual-specificity protein phosphatases (DSPs), a new family of protein tyrosine phosphatases (PTPs), are characterized by the ability to dephosphorylate both phospho-tyrosyl and phospho-seryl/threonyl residues. It has been known that most of the enzymes play important roles in the regulation of mitogenic signal transduction and control the cell cycle in response to extracellular stimuli. In this study, a novel human DSP gene named Dual-specificity Phosphatase18 (DUSP18) was isolated by large-scale sequencing analysis of a human fetal brain cDNA library. DUSP18 is localized at Chromosome 22 q12.1. Its cDNA is 2450 base pairs in length, encoding a 188-amino acid polypeptide in which a DSP motif but not a CH2 domain is included. RT-PCR revealed that the DUSP18 was widely expressed in different tissues. GST-DUSP18 fusion protein showed distinctive phosphatase activity toward p-nitrophenyl phosphate (pNPP), as well as oligopeptides containing pThr and pTyr, indicating that DUSP18 is a protein phosphatase with dual substrate specificity. The optimal condition for the reaction was pH 6.0 and 55 degrees C. Addition of Mn(2+) ions was able to enhance the enzyme activity while the activity was strongly inhibited by iodoaretic acid. Mutations in selected sites showed the importance of Asp-73, Cys-104, Arg-110 and Ser-111 in phosphatase activity of DUSP18.  相似文献   

17.
18.
Summary Fractionation of rabbit skeletal muscle cytosol on Aminohexyl-Sepharose has resulted in the identification of a latent ATP, Mg-dependent protein phosphatase whose catalytic subunit is in the active conformation, but is inhibited by the presence of more than one modulator unit. The partially purified enzyme is converted to an inactive, kinase FA-dependent form upon incubation at 30°C unless modulator-specific polyclonal antibodies are added to the preparation. The immunoglobulins also relieve the inhibition which is responsible for the low basal phosphatase activity of the enzyme, and they counteract all of the heat-stable inhibitor activity present in the preparation. Addition of free catalytic subunit abolishes the inhibition of the latent enzyme in a dose-dependent way, but cannot prevent the inactivation process. The inactivated phosphatase and the original latent enzyme exhibit the same apparent M r in sucrose density-gradient centrifugation (70 000) and in gel filtration (110 000).Abbreviations PMSF Phenylmethanesulphonyl Fluoride - TLCK L-l-chloro-3-(4-tosylamido)-7-amino2-heptanone-hydrochloride - TPCK L-l-chloro-3-(4-tosvlamido)-4-phenyl-2-butanone  相似文献   

19.
20.
We previously demonstrated that cAMP-dependent protein kinase was reduced in the dendrites of MAP2-deficient mice. In this study, we compared the expression of various protein phosphatases (PPs) between wild-type and map2(-/-) dendrites. Kinase-associated phosphatase (KAP) was the only PP which showed difference between the two phenotypes: (1) the expression of KAP was reduced in map2(-/-) cortical dendrites, and (2) the amount of KAP bound to microtubules was reduced in map2(-/-) brains. We also demonstrated in cultured neuroblastoma cells that KAP is not only expressed in dividing cells, but also in the neurites of differentiated cells. Our findings propose that KAP, which has been reported to function in cell-cycle control, has an as yet uncovered role in regulating dendritic functions. We also propose MAP2-deficient mice as an ideal system for identifying protein phosphatases essential for dendritic functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号