首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At temperatures below 20°K, EPR signals from a new iron-sulfur center (designated here as Center S-2 or (Fe-S)S-2) in addition to the classical “g = 1.94 signal” (designated as Center S-1 or (Fe-S)S-1) were detected in purified, soluble succinate dehydrogenase, particulate succinate ubiquinone reductase (Complex II) and particulate succinate cytochrome c reductase from bovine heart. The measured half-reduction potential (Em7.4) of Center S-1 was 0 ± 10 mV, while Em7.4 of Center S-2 was ?260 ± 15 mV in the membrane bound preparations. Upon solubilization of succinate dehydrogenase, the EPR behavior of Center S-2 became extremely labile similar to the characteristics of the reconstitutive activity of succinate dehydrogenase toward the rest of the respiratory chain.  相似文献   

2.
3.
Lysine 2,3-aminomutase from Clostridia catalyzes the interconversion of L-alpha-lysine with L-beta-lysine. The purified enzyme contains iron-sulfur ([Fe-S]) clusters, pyridoxal phosphate, and Co(II) [Petrovich, R. M., Ruzicka, F. J., Reed, G. H., & Frey, P. A. (1991) J. Biol. Chem. 266, 7656-7660]. Enzymatic activity depends upon the presence and integrity of these cofactors. In addition, the enzyme is activated by S-adenosylmethionine, which participates in the transfer of a substrate hydrogen atom between carbon-3 of lysine and carbon-2 of beta-lysine [Moss, M., & Frey, P. A. (1987) J. Biol. Chem. 262, 14859-14862]. This paper describes the electron paramagnetic resonance (EPR) properties of the [Fe-S] clusters. Purified samples of the enzyme also contain low and variable levels of a stable radical. The radical spectrum is centered at g = 2.006 and is subject to inhomogeneous broadening at 10 K, with a p1/2 value of 550 +/- 100 microW. The low-temperature EPR spectrum of the [Fe-S] cluster is centered at g = 2.007 and undergoes power saturation at 10 K in a homogeneous manner, with a p1/2 of 15 +/- 2 mW. The signals are consistent with the formulation [4Fe-4S] and are adequately simulated by a rhombic spectrum, in which gxx = 2.027, gyy = 2.007, and gzz = 1.99. Treatment of the enzyme with reducing agents converts the cluster into an EPR-silent form. Oxidation of the purified enzyme by air or ferricyanide converts the [Fe-S] complex into a species with an EPR spectrum that is consistent with the formulation [3Fe-4S].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
EPR signals arising from at least seven iron-sulfur centers were resolved in both reconstitutively active and inactive NADH dehydrogenases, as well as in particulate NADH-UQ reductase (Complex I). EPR lineshapes of individual iron-sulfur centers in the active dehydrogenase are almost unchanged from that in Complex I. Iron-sulfur centers in the inactive dehydrogenase give broadened EPR spectra, suggesting that modification of iron-sulfur active centers is associated with loss of the reconstitutive activity of the dehydrogenase. With the reconstitutively active dehydrogenase, the Em8.0 value of Center N-2 (iron-sulfur centers associated with NADH dehydrogenase are designated with prefix N) was shifted to a more negative value than in Complex I and restored to the original value on reconstitution of the enzyme with purified phospholipids.  相似文献   

5.
Succinate dehydrogenase is an indispensable enzyme involved in the Krebs cycle as well as energy coupling in the mitochondria and certain prokaryotes. During catalysis, succinate oxidation is coupled to ubiquinone reduction by an electron transfer relay comprising a flavin adenine dinucleotide cofactor, three iron-sulfur clusters, and possibly a heme b556. At the heart of the electron transport chain is a [4Fe-4S] cluster with a low midpoint potential that acts as an energy barrier against electron transfer. Hydrophobic residues around the [4Fe-4S] cluster were mutated to determine their effects on the midpoint potential of the cluster as well as electron transfer rates. SdhB-I150E and SdhB-I150H mutants lowered the midpoint potential of this cluster; surprisingly, the His variant had a lower midpoint potential than the Glu mutant. Mutation of SdhB-Leu-220 to Ser did not alter the redox behavior of the cluster but instead lowered the midpoint potential of the [3Fe-4S] cluster. To correlate the midpoint potential changes in these mutants to enzyme function, we monitored aerobic growth in succinate minimal medium, anaerobic growth in glycerol-fumarate minimal medium, non-physiological and physiological enzyme activities, and heme reduction. It was discovered that a decrease in midpoint potential of either the [4Fe-4S] cluster or the [3Fe-4S] cluster is accompanied by a decrease in the rate of enzyme turnover. We hypothesize that this occurs because the midpoint potentials of the [Fe-S] clusters in the native enzyme are poised such that direction of electron transfer from succinate to ubiquinone is favored.  相似文献   

6.
Succinate dehydrogenase consists of two protein subunits and contains one FAD and three iron-sulfur clusters. The flavin is covalently bound to a histidine in the larger, Fp, subunit. The reduction oxidation midpoint potentials of the clusters designated S-1, S-2, and S-3 in Bacillus subtilis wild-type membrane-bound enzyme were determined as +80, -240, and -25 mV, respectively. Magnetic spin interactions between clusters S-1 and S-2 and between S-1 and S-3 were detected by using EPR spectroscopy. The point mutations of four B. subtilis mutants with defective Fp subunits were mapped. The gene of the mutant specifically lacking covalently bound flavin in the enzyme was cloned. The mutation was determined from the DNA sequence as a glycine to aspartate substitution at a conserved site seven residues downstream from the histidine that binds the flavin in wild-type enzyme. The redox midpoint potential of the iron-sulfur clusters and the magnetic spin interactions in mutated succinate dehydrogenases were indistinguishable from the those of the wild type. This shows that flavin has no role in the measured magnetic spin interactions or in the structure and stability of the iron-sulfur clusters. It is concluded from sequence and mutant studies that conserved amino acid residues around the histidyl-FAD are important for FAD binding; however, amino acids located more than 100 residues downstream from the histidyl in the Fp subunit can also effect flavinylation.  相似文献   

7.
The presence of subunit V, the iron-sulfur protein, of complex III has been demonstrated in mitochondria from a mutant of Saccharomyces cerevisiae which lacks 5-aminolevulinic acid synthase and, hence, is devoid of heme. The mature form (24 K Da) of the iron-sulfur protein was observed in equal amounts in the heme-deficient and heme-sufficient cells with antiserum against subunit V and either the sensitive immuno-transfer technique or immunoprecipitation from dodecylsulfate-solubilized mitochondria. In addition, a slight shoulder with a molecular mass 1.5 kDa larger than the mature form was present in mitochondria from the heme-deficient cells. Electron paramagnetic resonance spectroscopy revealed the absence of iron-sulfur signals due to clusters S-1, S-2 and S-3 of succinate dehydrogenase or to Rieske's iron-sulfur cluster of complex III in mitochondria from the heme-deficient cells. The lack of iron-sulfur centers in these cells may be a consequence of the absence of sulfite reductase in the cells without heme.  相似文献   

8.
Iron-sulfur clusters present in rat liver submitochondrial particles were characterized by ESR at temperatures between 30 and 5.5 K combined with potentiometric titrations. The spectral and thermodynamic characteristics of the iron-sulfur clusters were generally similar to those previously reported for pigeon or bovine heart submitochondrial particles. Clusters N-1a, N-1b, N-2, N-3 and N-4 of NADH dehydrogenase had midpoint oxidation-reduction potentials at pH 7.5 of ?425, ?265, ?85, ?240 and ?260 mV, respectively. Clusters S-1 and S-3 of succinate dehydrogenase had midpoint potentials of 0 and +65 mV, respectively. The iron-sulfur cluster of electron-transferring flavoprotein-ubiquinone oxidoreductase exhibited the gz signal at g = 2.08 and had a midpoint potential of +30 mV. This signal was relatively prominent in rat liver compared to pigeon or bovine heart.Submitochondrial particles from rats chronically treated with ethanol (36% of total calories, 40 days) showed decreases of 20–30% in amplitudes of signals due to clusters N-2, N-3 and N-4 compared to those from pair-fed control rats. Signals from clusters N-1b, S-1, S-3 and electron-transferring flavoprotein-ubiquinone oxidoreductase were unaffected. Microwave power-saturation behavior was similar for both submitochondrial particle preparations, suggesting that the lower signal amplitudes reflected a lower content of these particular clusters. NADH dehydrogenase activity was significantly decreased (46%), whilst succinate dehydrogenase activity was elevated (25%), following chronic ethanol consumption. The results indicate that chronic ethanol treatment leads to an alteration of the structure and function of the NADH dehydrogenase segment of the electron transfer chain. This alteration is one of the factors contributing to the lower respiration rates observed following chronic ethanol administration.  相似文献   

9.
Soluble succinate dehydrogenase contains 8 atoms of iron, 8 atoms of acid labile sulfur and one covalently bound FAD per molecule; however, the distribution of iron and sulfur has not been well established. An iron counting method was devised in which electron spin resonance detectable complexes containing one iron each were formed with NO and cysteine and complex formation was measured during the gradual dissociation of the iron-sulfur clusters. In addition, a method described by Cammack was used to provide independent evidence. Both methods point to the existence of two binuclear clusters and one tetranuclear iron-sulfur cluster in the succinate dehydrogenase molecule.  相似文献   

10.
Bacillus subtilis succinate dehydrogenase (SDH) is composed of two unequal subunits designated Fp (Mr, 65,000) and Ip (Mr. 28,000). The enzyme is structurally and functionally complexed to cytochrome b 558 (Mr, 19,000) in the membrane. A total of 21 B. subtilis SDH-negative mutants were isolated. The mutants fall into five phenotypic classes with respect to the presence and localization of the subunits of the SDH-cytochrome b558 complex. One class contains mutants with an inactive membrane-bound complex. Membrane-bound enzymatically active SDH could be reconstituted in fused protoplasts of selected pairs of SDH-negative mutants. Most likely reconstitution is due to the assembly of preformed subunits in the fused cells. On the basis of the reconstitution data, the mutants tested could be divided into three complementation groups. The combined data of the present and previous work indicate that the complementation groups correspond to the structural genes for the three subunits of the membrane-bound SDH-cytochrome b558 complex. A total of 31 SDH-negative mutants of B. subtilis have now been characterized. The respective mutations all map in the citF locus at 255 degrees on the B. subtilis chromosomal map. In the present paper, we have revised the nomenclature for the genetics of SDH in B. subtilis. All mutations which give an SDH-negative phenotype will be called sdh followed by an isolation number. The designation citF will be omitted, and the citF locus will be divided into three genes: sdhA, sdhB, and sdhC. Mutations in sdhA affect cytochrome b558, mutations in sdhB affect Fp, and mutations in sdhC affect Ip.  相似文献   

11.
The nucleotide sequence of a 2.7-kilobase segment of DNA containing the sdhA and sdhB genes encoding the flavoprotein (Fp, sdhA) and iron-sulfur protein (Ip, sdhB) subunits of the succinate dehydrogenase of Bacillus subtilis was determined. This sequence extends the previously reported sequence encoding the cytochrome b558 subunit (sdhC) and completes the sequence of the sdh operon, sdhCAB. The predicted molecular weights for the Fp and Ip subunits, 65,186 (585 amino acids) and 28,285 (252 amino acids), agreed with the values determined independently for the labeled Fp and Ip antigens, although it appeared that the B. subtilis Fp was not functional after expression of the sdhA gene in Escherichia coli. Both subunits closely resembled the corresponding Fp and Ip subunits of the succinate dehydrogenase (SDH) and fumarate reductase of E. coli in size, composition, and amino acid sequence. The sequence homologies further indicated that the B. subtilis SDH subunits are equally related to the SDH and fumarate reductase subunits of E. coli but are less closely related than are the corresponding pairs of E. coli subunits. The regions of highest sequence conservation were identifiable as the catalytically significant flavin adenine dinucleotide-binding sites and cysteine clusters of the iron-sulfur centers.  相似文献   

12.
Flavin-containing opine dehydrogenase from Bradyrhizobium japonicum forms a heterooligomeric α4β4γ4 enzyme complex. An electron paramagnetic resonance spectroscopy analysis using wild-type and site-directed mutants revealed that [4Fe-4S] and [2Fe-2S] clusters bind to two different types of [Fe-S] binding sites in the γ- and α-subunits, respectively. The latter was found to be important for structural folding and enzyme catalysis.  相似文献   

13.
14.
We describe the cloning and characterization of the complete gene for the iron-sulfur protein subunit of succinate dehydrogenase (EC 1.3.99.1) from Saccharomyces cerevisiae. The promoter and coding sequence have been cloned into an Escherichia coli-yeast shuttle vector. The cloned gene complements the defect in a succinate dehydrogenase-deficient yeast mutant isolated by us, and gene expression is fully responsive to induction by glucose deprivation, indicating that the promoter is intact.  相似文献   

15.
Two binuclear iron-sulfur clusters (designated S-1 and S-2) are present in succinate dehydrogenase in approximately equal concentration to that of flavin. The large difference in their midpoint potentials (0 and -400 mV, respectively, in the soluble enzyme) permits the acquisition of individual electron paramagnetic resonance spectra characterized by nearly identical rhombic g tensors (gz = 2.025, gy = 1.93, gx = 1.905). Spin-coupling between the two centers is manifested by broadening and splitting of spectra of reconstitutively active and inactive succinate dehydrogenase, respectively, as the temperature is lowered; relief of power saturation of Center S-1 spectra on reduction of Center S 2; and observation of half-field ("delta ms = 2") signals in the dithionite-reduced enzyme. Saturation behavior of fully reduced dehydrogenase is consistent with the presence of S-1 and S-2 at equivalent concentrations/molecule. Simulation of the spin-coupled spectra, assuming dipolar interaction, provides information on molecular structure. Electron paramagnetic resonance spectra of the enzyme in 80% dimethylsulfoxide are nearly identical to the characteristic binuclear spectra obtained with adrenodoxin. These data provide additional evidence for binuclear structure of both Center S-1 and S-2. The extremely fast relaxation of Center S-2 at low temperatures would imply either an anomalously small value of J or an alternative relaxation mechanism, possibly due to the coupling between S-1 and S-2.  相似文献   

16.
Antibodies specific for the Mr 65,000 (flavoprotein) and the Mr 28,000 subunits of the succinic dehydrogenase (SDH) of Bacillus subtilis were obtained. By using these antibodies it was shown that both subunits accumulated in the cytoplasm during 5-aminolevulinic acid starvation of a 5-aminolevulinic acid auxotroph. In the cytoplasm the subunits were not associated since they precipitated essentially independently of each other with subunit-specific antibody. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis the cytoplasmic subunits migrated identically with the corresponding subunits from the purified membrane-bound SDH complex. Cytoplasmic subunits were pulse-labeled with L-[35S]methionine during 5-aminolevulinic acid starvation. The labeled subunits bound to the membrane when heme synthesis was resumed and also when protein synthesis was blocked by chloramphenicol before readdition of 5-aminolevulinic acid. The experiments thus demonstrated a precursor relationship between cytoplasmic subunits and the subunits of the membrane-bound SDH complex. All SDH-negative mutants isolated so far carry mutations in the citF locus. None of the mutants was found to have either the Mr 65,000 or the Mr 28,000 SDH subunits in the membrane. Four citF mutants, however, contained both subunits in the cytoplasm. Three of these mutants lacked spectrally detectable cytochrome b558. The respective mutations mapped at one end of the citF locus. These results strongly support our previous suggestion that cytochrome b558 is (part of) a membrane binding site for SDH in B. subtilis.  相似文献   

17.
The iron-sulfur protein is an essential component of mitochondrial complex II (succinate dehydrogenase, SDH), which is a functional enzyme of both the citric acid cycle and the respiratory electron transport chain. This protein is encoded by a single-copy nuclear gene in mammals and fungi and by a mitochondrial gene in Rhodophyta and the protist Reclinomonas americana. In Arabidopsis thaliana, the homologous protein is now found to be encoded by three nuclear genes. Two genes (sdh2-1 andsdh2-2) likely arose from a relatively recent duplication event since they have similar structures, encode nearly identical proteins and show similar expression patterns. Both genes are interrupted by a single intron located at a conserved position. Expression was detected in all tissues analysed, with the highest steady-state mRNA levels found in flowers and inflorescences. In contrast, the third gene (sdh2-3) is interrupted by 4 introns, is expressed at a low level, and encodes a SDH2-3 protein which is only 67% similar to SDH2-1 and SDH2-2 and has a different N-terminal presequence. Interestingly, the proteins encoded by these three genes are probably functional because they are highly conserved compared with their homologues in other organisms. These proteins contain the cysteine motifs involved in binding the three iron-sulfur clusters essential for electron transport. Furthermore, the three polypeptides are found to be imported into isolated plant mitochondria.  相似文献   

18.
Electron paramagnetic resonance studies of Complex II from the mitochondrial respiratory chain and soluble preparations of succinate dehydrogenase have, for the first time, identified a signal arising from a [4Fe-4S]1+ cluster, S2, in dithionite-reduced samples. Redox titrations, monitored by electron paramagnetic resonance spectroscopy demonstrate that this signal appears at the same midpoint potential as the enhancement of the spin relaxation properties of the [2Fe-2S]1+ center, S1, in both Complex II and reconstitutively active soluble enzyme. The results complement recent magnetic circular dichroism studies of succinate dehydrogenase (Johnson, M. K., Morningstar, J. E., Bennett, D. E., Ackrell, B. A. C., and Kearney, E. B. (1985) J. Biol. Chem. 260, 7368-7378) which assigned cluster S2 as a [4Fe-4S]2+,1+ center and provide evidence for spin interaction between the paramagnetic reduced forms of centers S1 and S2.  相似文献   

19.
A method is described for the interpretation of electron paramagnetic resonance spectra of reduced binuclear iron-sulfur proteins. The gy values for any protein can be analyzed so that both the symmetry and the extent of covalency at the paramagnetic site can be parameterized. These parameters can be related to the chemical composition of the paramagnetic center, the protein-dependent charge delocalization of the unpaired electron, and the geometric arrangement at the reduced iron atom. These analyses may ultimately be used to rationalize certain aspects of the redox potentials of the various iron-sulfur proteins.  相似文献   

20.
The succinate dehydrogenase isolated from Bacillus subtilis was found to catalyze the oxidation of succinate with hydrophilic quinones. Either naphthoquinones or benzoquinones served as acceptors. The enzyme activity increased with the redox potential of the quinone. The highest turnover number was commensurate with that of the bacterial succinate respiration in vivo. The succinate dehydrogenase was similarly active in fumarate reduction with quinols. The highest activity was obtained with the most electronegative quinol. The fumarate reductase isolated from Wolinella succinogenes catalyzed succinate oxidation with quinones and fumarate reduction with the corresponding quinols at activities similar to those of the B. subtilis enzyme. Succinate oxidation by the lipophilic quinones, ubiquinone or vitamin K-1, was monitored as cytochrome c reduction using proteoliposomes containing succinate dehydrogenase together with the cytochrome bc1 complex. The activity with ubiquinone or vitamin K-1 was commensurate with the succinate respiratory activity of bacteria or of the bacterial membrane fraction. The results suggest that menaquinone is involved in the succinate respiration of B. subtilis, although its redox potential is unfavorable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号