首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
SYNOPSIS. Division and epimastigote-to-trypomastigote transformation of Trypanosoma cruzi were observed in O'Daly's SM medium supplemented, in place of whole fetal calf serum, with fractions of this serum, its partially purified proteins, or with mixtures of these fractions and proteins. In addition to their division-promoting effects, most but not all serum fractions stimulated [3H]thymidine uptake by the flagellates. As revealed by TEAE-cellulose column chromatography and immunoelectrophoresis, the serum fractions were altered during the logarithmic growth phase of the trypanosomes.  相似文献   

2.
Certain drugs exhibit a remarkable correlation between their ability to inhibit synaptosomal uptake of dopamine and the binding of [3H]mazindol to striatal membranes. To investigate the role of mazindol binding sites in the dopamine uptake process and the fate of these sites (labeling dopaminergic neurons) during aging, we have examined the properties of mazindol binding and dopamine uptake in individual young and old rats. There was a 48% decrease (p = 0.0001) in the Bmax of mazindol binding and a 23% decrease (p = 0.0166) in the Vmax of dopamine uptake with no apparent change in their affinities with age. Regression analysis of the relationship between Bmax and Vmax exhibited a significant correlation in old (p = 0.0156) but not young rats (p = 0.1398). These data suggest that the number of mazindol binding sites decreases with age and that the number of sites on the dopamine transporter complex far exceeds the number required to elicit maximal dopamine uptake.  相似文献   

3.
SYNOPSIS Hydroxyurea (HU) concentrations above 50 μg/ml reversibly inhibited cell division of Trypanosoma brucei brucei stock STIB 366 procyclic culture forms, but not growth of individual cells. the volume of the nucleus and of the cytoplasm increased in the presence of the drug as did the percentage of cells with 2 kinetoplasts. Electron microscopy revelaed that the nuclear membrane was extended forming protrusions which surrounded areas of the cytoplasm. Replication of the kinetoplast DNA did not seem to be affected by HU. the uptake of [3H]thymidine increased in the presence of 25 μ/ml HU 3-fold compared to control cells. the nuclear volume and the dry weight of the culture forms increased proportionally to the amount of label incorporated.  相似文献   

4.
When rat brain membranes were incubated with the benzodiazepine agonist [3H]flunitrazepam or the partial inverse benzodiazepine agonist [3H]Ro 15-4513 in the presence of ultraviolet light one protein (P51) was specifically and irreversibly labeled in cerebellum and at least two proteins (P51 and P55) were labeled in hippocampus. After digestion of the membranes with trypsin, protein P51 was degraded into several peptides. When P51 was photolabeled with [3H]Ro 15-4513, four peptides with apparent molecular weights of 39,000, 29,000, 21,000, and 17,000 were observed. When P51 was labeled with [3H]flunitrazepam, only two peptides with apparent molecular weights of 39,000 and 25,000 were obtained. Protein P55 was only partially degraded by trypsin, and whether it was labeled with [3H]flunitrazepam or [3H]Ro 15-4513 it yielded the same two proteolytic peptides with apparent molecular weights of 42,000 and 45,000. These results support the existence of at least two different benzodiazepine receptor subtypes associated with proteins P51 and P55. The different receptors seem to be differentially protected against treatment with trypsin. In addition, these results indicate that in the benzodiazepine receptor subtype associated with P51 benzodiazepine agonists and partial inverse benzodiazepine agonists irreversibly bind to different parts of the molecule.  相似文献   

5.
Previous work has shown that [3H]paroxetine is a potent and selective in vitro label for serotonin uptake sites in the mammalian brain. In the present study, [3H]paroxetine was tested in mice as an in vivo label for serotonin uptake sites. Maximum tritium concentration in the whole brain (1.4% of the intravenous dose) was reached 1 h after injection into a tail vein. Distribution of the tracer at 3 h after injection followed the distribution of serotonin uptake sites known from previous in vitro binding studies (r = 0.85). The areas of highest [3H]paroxetine concentration, in decreasing order, were: hypothalamus greater than frontal cortex greater than olfactory tubercles greater than thalamus greater than upper colliculi greater than brainstem greater than hippocampus greater than striatum greater than cerebellum. Preinjection of carrier paroxetine (1 mg/kg) significantly decreased [3H]paroxetine concentration in all areas except in the cerebellum, which is known to contain a relatively low number of specific binding sites. Kinetic studies showed highest specific [3H]paroxetine binding (tissue minus cerebellum) at 2 h after injection and slow clearance of activity thereafter (half-time of dissociation from the hypothalamus, 215 min). The specificity of in vivo [3H]paroxetine binding was studied by preinjecting monoamine uptake blockers or receptor antagonists 5 min before administration of [3H]paroxetine. Serotonergic or muscarinic cholinergic receptor antagonists and dopamine or norepinephrine uptake blockers did not reduce the in vivo binding of [3H]paroxetine. In contrast, there was an excellent correlation (r = 0.99) between the in vivo inhibitory potencies of serotonin uptake blockers in this study and previously published in vitro data on inhibition of [3H] serotonin uptake in brain synaptosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The aim of the present investigation was to study and compare the in vitro binding properties of the two radioligands N-[3H]methylspiperone ([3H]NMSP) and [3H]raclopride. These compounds, labeled with 11C, have been extensively used in positron emission tomography studies on central dopamine D2 receptors in schizophrenic patients, although with diverging results. One study (using [11C]NMSP) showed an increased dopamine receptor density in drug-naive schizophrenic patients, whereas in another study (using [11C]raclopride) the density in schizophrenic patients was no different from that in healthy controls. In the present study, using in vitro binding techniques, the density of the binding sites was found to be similar irrespective of which of the two radioligands was used (20 fmol/mg wet weight in rat striatum and 10 fmol/mg in human putamen; the 5-hydroxytryptamine 2 receptors were blocked with 40 nM ketanserin). [3H]NMSP had a 10-fold higher affinity (KD, 0.3 nM in rat striatum and 0.2 nM in human putamen) than [3H]raclopride (KD, 2.1 nM in rat striatum and 3.9 nM in human putamen), which was consistent with the longer dissociation half-life of [3H]NMSP compared with [3H]raclopride (14.8 and 1.19 min, respectively). There was an approximate overall similarity between the inhibition constants for five dopamine antagonists, chlorpromazine, haloperidol, raclopride, remoxipride, and NMSP, when using either radioligand. The Ki values were, however, two- to four-fold higher when using [3H]NMSP as the radioligand, irrespective of inhibiting compound, except for chlorpromazine (and haloperidol in human putamen). NMSP was found to inhibit the binding of [3H]raclopride competitively, whereas raclopride inhibited the binding of [3H]NMSP both competitively and noncompetitively. This difference suggests that part of the binding site is exclusively used by NMSP and can only be allosterically interfered with by raclopride. It is proposed that [3H]NMSP binds to an additional set of accessory binding sites, presumably located more distantly from the agonist binding active site than the sites to which [3H]raclopride binds.  相似文献   

7.
[3H]Dopamine uptake and [3H]cocaine binding sites were studied in primary cultures of ventral mesencephalon from 14-day-old rat embryos. Specific binding sites for [3H]cocaine and [3H]mazindol were detected only in intact cell cultures of ventral mesencephalon, and were absent in sonicated, washed membranes prepared from these cell cultures. [3H]Cocaine was not taken up by the cells through an active transport process because [3H]cocaine binding occurred also at 4 degrees C. Moreover, the possibility of [3H]cocaine entering the cells by passive diffusion and ion trapping was also excluded because extensive washing failed to remove [3H]cocaine from the cells. [3H]Cocaine binding was reduced to 6% of control when cells were permeabilized with streptolysin O (0.2 U/ml, 5 min). Taken together, these results suggest that in cultured mesencephalic neurons, [3H]cocaine may enter the cell by passive diffusion and then be sequestered by a cytosolic compartment that is lost in the process of permeabilization or sonication and washing of membrane preparations. Permeabilization of cultured neurons failed to alter the storage of [3H]dopamine. When cells were permeabilized with streptolysin O (0.2 U/ml; 5 min) after [3H]dopamine was taken up, [3H]dopamine was retained by the cells and did not leak into the incubation medium, indicating that [3H]dopamine was stored in sites that could not pass through the perforated membranes. In contrast, [3H]dopamine uptake into already permeabilized cells was reduced by 33%, suggesting that a cytosolic protein that had leaked out may play a functional role in the uptake process. In contrast to striatal membrane preparations of adult rats, [3H]cocaine binding in intact mesencephalic cell cultures was Na+ independent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Binding of 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine ([3H]GBR 12935) was studied in membrane preparations of several human brain regions. In putamen, the substituted piperazine derivates cis- and trans-flupenthixol displaced 90% of the total [3H]GBR 12935 binding. Computer-assisted analysis of the competition curves revealed a high-affinity site (30%; KiH = 54 nM) and a low-affinity site (60%; KiL = 4.5 microM). The dopamine uptake blockers mazindol and nomifensine only displaced 30% of the total [3H]GBR 12935 binding in a monophasic way. Binding of [3H]GBR 12935 to the dopamine uptake sites, i.e., that displaced by dopamine uptake blockers, corresponded to part of the binding having low affinity for flupenthixol and was only detected in putamen, nucleus caudatus, nucleus accumbens, and substantia nigra. Even after masking the high-affinity binding site for flupenthixol by including 1 microM cis-flupenthixol in the binding assays, no dopamine uptake sites could be detected in globus pallidus, amygdala, thalamus, hippocampus, and cerebral cortex. Binding of [3H]GBR 12935 to dopamine uptake sites was lost in the nucleus caudatus ipsilateral to ventral midbrain infarctions, confirming their location on nigrostriatal nerve endings. Gross unilateral lesions of the striato- and pallidonigral pathways did not affect the number of dopamine uptake sites in the ipsilateral substantia nigra, suggesting that they may reside on the soma or dendrites of nigral neurons.  相似文献   

9.
The uptake and metabolism of H-Pro-[3H]Leu-Gly-NH2 ([3H]PLG) in rat brain was investigated by reverse-phase paired-ion high pressure liquid chromatography. Following in vitro incubation of [3H]PLG with rat brain subcellular preparations, the microsomal-cytosol fraction was about twice as active in degrading PLG as the crude mitochondrial-synaptosomal fraction. For both enzyme preparations the pH optimum was found at pH 7-7.5. The major labeled metabolite was [3H]leucine, whereas 3H]labeled Leu-Gly-NH2 as the only labeled peptide intermediate was found in trace amounts. After intravenous injection of [3H]PLG the uptake of unmetabolized peptide in the brain appeared to be very low: 0.008% and 0.001% of the administered dose/g tissue at 2 and 5 min after injection respectively, while at longer survival times intact peptide was below the detection limit. Compared with the intravenous route of administration, intracerebroventricular injection of [3H]PLG yielded much higher brain concentrations of unmetabolized PLG. Following both routes of administration, the metabolite profile was in agreement with that obtained after in vitro incubation. However, the in vivo experiments also showed considerable incorporation of [3H]leucine liberated from [3H]PLG into proteins. Both the in vitro and in vivo results indicate that the initial cleavage of PLG in rat brain occurs at the NH2-terminus and that the dipeptide intermediate H-Leu-Gly-NH2 is subsequently hydrolyzed to its constituent amino acids very rapidly.  相似文献   

10.
Abstract: [3H] γ -Aminobutyric acid ([3H]GABA) binding to purified lipids was examined in an organic solvent-aqueous partition system. In addition, the [3H]GABA binding capacity in the partition system was compared with the capacity of lipids to alter sodium-dependent [3H]GABA uptake into synaptosomes isolated from rat whole brains. [3H]GABA was found to bind to all of the lipids studied in the organic solvent-aqueous partition system [phosphatidic acid (PA), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), gangliosides, and sulfatide], although PS exhibited the greatest binding capacity. [3H]GABA uptake into synaptosomes was enhanced by PS (48.0%) but was not altered by any other lipid. PS enhancement of [3H]GABA uptake required the presence of sodium and was blocked by nipecotic acid (10 μ m ). These results suggest that PS may play a role in the sodium-dependent GABA reuptake process in the presynaptic nerve end.  相似文献   

11.
Brain astroglial cells, whether from a bulk isolated preparation or in culture, have been shown to take up serotonin actively. [3H]imipramine has been proposed as a specific label for serotonin uptake sites in brain. We therefore studied the binding of [3H]imipramine to C6 astroglial cells in culture to determine if some of the binding of this radioligand in brain homogenates is actually to serotonin transporting sites on glia. [3H]Imipramine binds saturably (Bmax = 202 fmol/mg protein) and with high affinity (KD = 1.72 nM) to C6 cells. This binding is competitively inhibited by other tricyclic antidepressants. The C6 cells actively transport [3H]serotonin with a Km of 2 microM and a Vmax of 1080 fmol/10(6) cells/min. However, the pharmacological profile for inhibition of serotonin uptake does not correlate with the pharmacological profile for inhibition of [3H]imipramine binding. These results suggest that the binding of [3H]imipramine to astroglial cells is not related to their capacity for active uptake of serotonin. Further, in brain homogenates, some of the binding of [3H]imipramine may not be to neuronal uptake sites but rather may be to sites on astroglial cells.  相似文献   

12.
At 0°C, when Na+ was the only cation present in the incubation medium, increasing the Na+ concentration from 3 to 10 mM enhanced the affinity of [3H]l-[2-(di-phenylmethoxy)ethyl]-4-(3-phenyl-2-propenyl)piperazine ([3H]GBR 12783) for the specific binding site present in rat striatal membranes without affecting the 5max. For higher Na+ concentrations, specific binding values plateaued and then slightly decreased at 130 mM Na+. In a 10 mM Na+ medium, the KD and the Bmax were, respectively, 0.23 nM and 12.9 pmol/mg of protein. In the presence of 0.4 nM [3H]GBR 12783, the half-maximal specific binding occurred at 5 mM Na+. A similar Na+ dependence was observed at 20°C. Scatchard plots indicated that K+, Ca2+, Mg2+, and Tris+ acted like competitive inhibitors of the specific binding of [3H]GBR 12783. The inhibitory potency of various cations (K+, Ca2+, Mg2+, Tris+, Li+ and choline) was enhanced when the Na+ concentration was decreased from 130 to 10 mM. In a 10 mM Na+ medium, the rank order of inhibitory potency was Ca2+ (0.13 mM) > Mg2+ > Tris+ > K+ (15 mM). The requirement for Na+ was rather specific, because none of the other cations acted as a substitute for Na+. No anionic requirement was found: Cl-, Br-, and F- were equipotent. These results suggest that low Na+ concentrations are required for maximal binding; higher Na+ concentrations protect the specific binding site against the inhibitory effect of other cations.  相似文献   

13.
14.
Irreversible photolabeling by [3H]flunitrazepam of four proteins with apparent molecular weights 51,000 (P51), 53,000 (P53), 55,000 (P55), and 59,000 (P59) was investigated in various rat brain regions by SDS-polyacrylamide gel electrophoresis, fluorography, and quantitative determination of radioactivity bound to proteins. On maximal labeling of these proteins, only 15-25% of [3H]flunitrazepam reversibly bound to membranes becomes irreversibly attached to proteins. Results presented indicate that for every [3H]flunitrazepam molecule irreversibly bound to membranes, three molecules dissociate from reversible benzodiazepine binding sites. This seems to indicate that these proteins are either closely associated or identical with reversible benzodiazepine binding sites, and supports the hypothesis that four benzodiazepine binding sites are associated with one benzodiazepine receptor. When irreversible labeling profiles of proteins P51, P53, P55, and P59 were compared in different brain regions, it was found that labeling of individual proteins varied independently, supporting previous evidence that these proteins are associated with distinct benzodiazepine receptors.  相似文献   

15.
Tricyclic antidepressant drugs inhibit [3H]imipramine binding to the rat brain cortex in a competitive manner, giving linear Hofstee plots and Hill coefficients of approximately 1.0. Serotonin, the only neurotransmitter to inhibit [3H]imipramine binding, does so in a complex manner, exhibiting a Hill coefficient of 0.40-0.50. Nontricyclic inhibitors of serotonin uptake such as fluoxetine, paroxetine, norzimelidine, and citalopram inhibit [3H]imipramine binding in the same complex manner as serotonin. These results are interpreted as suggesting that [3H]imipramine binds to a site associated with the serotonin uptake system but different from either the substrate recognition site for serotonin or the site of action of the nontricyclic inhibitors of neuronal uptake of serotonin.  相似文献   

16.
Abstract: [3H]Glutamate uptake and binding studies were performed in the visual cortices, lateral geniculate nuclei (LGN), and superior colliculi of 3-month-old rats with one eyelid surgically closed from postnatal day 10 (monocular deprivation). Uptake and binding were highest in the lateral geniculate nucleus followed by the visual cortex (69% and 15%, respectively compared to LGN values) and the superior colliculus (32% and 59% of LGN values). Monocular deprivation did not affect [3H]glutamate uptake in any of the visual regions examined. However, a 46% decrease in [3H]glutamate binding in the lateral geniculate nucleus ipsilateral to the sutured eye was detected. Binding levels in other regions were not affected.  相似文献   

17.
High- and Low-Affinity Binding of [3H]Imipramine in Mouse Cerebral Cortex   总被引:1,自引:0,他引:1  
Binding of [3H]imipramine in mouse cerebral cortex was found to be nonhomogeneous. Competition experiments, Scatchard analysis, and Hill plots are compatible with the existence of binding with high (nanomolar) and low (micromolar) affinity. Low-affinity binding could be eliminated by the use of low concentrations of imipramine as the competing ligand. In contrast to the high-affinity binding, the low-affinity binding was found to be unrelated to the neuronal uptake system for serotonin.  相似文献   

18.
Abstract: The binding of the dopamine uptake inhibitor [3H] GBR-12935 to 16 regions of the human brain was investigated in competition experiments with increasing concentrations of GBR-12909, mazindol, and dopamine. The methodology used included a relatively high tissue concentration (8 mg/ml) and addition of 5 m M KCI in the assay buffer. GBR-12909 inhibited 80–90% of the binding in most regions, whereas dopamine only inhibited the binding in the striatum. Mazindol inhibited only part of the cortical binding at concentrations of >1 μ M , whereas the inhibition in the caudate and the putamen also contained a high-affinity component representing the dopamine uptake site. It is concluded that the [3H] GBR-12935 binding sensitive to GBR-12909 cannot be regarded as specific binding to the dopamine uptake site because the displaceable binding most likely is not related to the dopamine uptake site.  相似文献   

19.
Abstract: A [3H]muscimol radioreceptor assay was used to measure the levels of GAB A in mouse brain. The method is based on the competitive inhibition of [3H]muscimol binding to the GABA receptor by GABA extracted from tissue. The specificity and accuracy of the method was established by comparative measurements of GABA levels by gas chromatography. GABA levels obtained by radioreceptor assay (R) and gas chromatography (GC) in different areas of mouse brain were (in μmol/g tissue ± S.E.M.): cerebral cortex 1.41 ± 0.06 (R), 1.50 ± 0.03 (GC); corpus striatum 1.70 ± 0.05 (R), 1.66 ± 0.01 (GC); cerebellum 1.15 ± 0.04 (R), 1.11 ± 0.07 (GC); hippocampus 1.35 ± 0.04 (R), 1.43 ± 0.04 (GC). The sensitivity of the assay was 5 pmol of GABA, which is sufficient to measure GABA levels in brain. The technique described is simple and rapid and it can be used for unpurified tissue extracts.  相似文献   

20.
We studied [3H]N-[1-(2-thienyl)cyclohexyl]-3,4-piperidine [( 3H]TCP) binding to human frontal cortex obtained at autopsy from 10 histologically normal controls and eight histopathologically verified cases with Alzheimer-type dementia (ATD). Extensively washed membrane preparations were used to minimize the effects of endogenous substances. In ATD frontal cortex, the total concentration (Bmax) of [3H]TCP binding sites was significantly reduced by 40-50%. The apparent dissociation constant (KD) values showed no significant change. The reduction in binding capacity was also apparent in Triton X-100-treated membrane preparations, and there was a linear correlation between the number of [3H]TCP binding sites and that of N-methyl-D-aspartate (NMDA)-sensitive [3H]glutamate binding sites. [3H]TCP binding sites spared in ATD brains retained the affinity for the ligand and the reactivity to NMDA, L-glutamate, and glycine. These results suggest that the primary change in NMDA receptor-ion channel complex in ATD brains is the reduction of its number, possibly reflecting the loss of neurons bearing these receptor complexes, and that the functional linkage within the receptor complexes spared in ATD brains remains normal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号