首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high frequency of G-->T transversions in the p53 gene is a distinctive feature of lung cancer patients with a smoking history and is commonly believed to reflect the direct mutagenic signature of polycyclic aromatic hydrocarbon (PAH) adducts along the gene. Using the April 2000 update of the p53 mutation database of the International Agency for Research on Cancer together with the primary literature, we confirm that the frequency of p53 G-->T transversions in lung cancer of smokers is about three times higher than their frequency in lung cancer of nonsmokers and in most other smoke-unrelated cancers. In contrast, the frequency of C-->A transversions, the DNA-strand mirror counterpart of G-->T transversions, appears to be similar in virtually all human cancers. Along with other data, this strand bias leads us to suggest that smoking may inhibit repair of G-->T primary lesions on the non-transcribed strand. As to the origin of G-->T primary lesions in the p53 gene, we unexpectedly found that cell lines derived from lung cancers, but not from other cancers, demonstrate significant additional excess of G-->T transversions when compared to p53 mutations in parent primary tumors. A detailed codon-by-codon comparison provides evidence in favor of the in vitro origin of this culture-associated G-->T augmentation. Since in culture lung cancer cell lines are not exposed to the carcinogens from smoke, one would rather ascribe these new G-->T transversions to some other mutagens such as, for example, reactive oxygen and nitrogen species. These results are consistent with our previous report [Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 12244], and suggest that other factors, in addition to the direct mutagenic action of PAH-like carcinogens, contribute to p53 mutation-associated lung malignancy.  相似文献   

2.
Rodin SN  Rodin AS 《Mutation research》2004,545(1-2):141-4; author reply 145-6; discussion 147
Our recent retrospective analysis of the lung cancer-associated p53 mutation data [Mutat. Res. 508 (2002) 1] showed the possibility of (i) inhibiting action of tobacco smoke on repair of G --> T primary lesions in the non-transcribed strand of the p53 gene and (ii) the origin of new p53 mutations, predominantly G --> T transversions, in lung cancer cell lines apparently unexposed to tobacco smoke. In summary, our arguments suggest that (i) in addition to polycyclic aromatic hydrocarbons (PAH)-DNA adducts there exist other lung cancer-specific, rather than smoke-specific sources of G --> T transversions and (ii) a direct mutagenic action is not the only smoke-associated cause of the prevalence of this class of p53 mutations in lung cancer. In the subsequent critical commentary [Mutat. Res. 526 (2003) 39], Pfeifer and Hainaut suggested our arguments to be "incompatible with available evidence". We would like to address their critique, and appreciate the editors of Mutation Research giving us an opportunity to do so.  相似文献   

3.
Genotoxicity of tobacco smoke and tobacco smoke condensate: a review   总被引:22,自引:0,他引:22  
DeMarini DM 《Mutation research》2004,567(2-3):447-474
This report reviews the literature on the genotoxicity of mainstream tobacco smoke and cigarette smoke condensate (CSC) published since 1985. CSC is genotoxic in nearly all systems in which it has been tested, with the base/neutral fractions being the most mutagenic. In rodents, cigarette smoke induces sister chromatid exchanges (SCEs) and micronuclei in bone marrow and lung cells. In humans, newborns of smoking mothers have elevated frequencies of HPRT mutants, translocations, and DNA strand breaks. Sperm of smokers have elevated frequencies of aneuploidy, DNA adducts, strand breaks, and oxidative damage. Smoking also produces mutagenic cervical mucus, micronuclei in cervical epithelial cells, and genotoxic amniotic fluid. These data suggest that tobacco smoke may be a human germ-cell mutagen. Tobacco smoke produces mutagenic urine, and it is a human somatic-cell mutagen, producing HPRT mutations, SCEs, microsatellite instability, and DNA damage in a variety of tissues. Of the 11 organ sites at which smoking causes cancer in humans, smoking-associated genotoxic effects have been found in all eight that have been examined thus far: oral/nasal, esophagus, pharynx/larynx, lung, pancreas, myeoloid organs, bladder/ureter, uterine cervix. Lung tumors of smokers contain a high frequency and unique spectrum of TP53 and KRAS mutations, reflective of the PAH (and possibly other) compounds in the smoke. Further studies are needed to clarify the modulation of the genotoxicity of tobacco smoke by various genetic polymorphisms. These data support a model of tobacco smoke carcinogenesis in which the components of tobacco smoke induce mutations that accumulate in a field of tissue that, through selection, drive the carcinogenic process. Most of the data reviewed here are from studies of human smokers. Thus, their relevance to humans cannot be denied, and their explanatory powers not easily dismissed. Tobacco smoke is now the most extreme example of a systemic human mutagen.  相似文献   

4.
Nonsmoking women in Xuan Wei County, Yunnan Province, China who use smoky coal for cooking and heating in poorly ventilated homes have the highest lung cancer mortality rate in China, and their lung cancer is linked epidemiologically to their use of smoky coal. The emissions contain 81% organic matter, of which 43% is polycyclic aromatic hydrocarbons (PAHs). Exposure assessment and molecular analysis of the lung tumors from nonsmoking women who use smoky coal strongly indicate that PAHs in the emissions are a primary cause of the elevated lung cancer in this population. Here we have determined the mutation spectra of an extract of smoky coal emissions in Salmonella TA98 and TA100; the extract was not mutagenic in TA104. The extract was 8.7 x more mutagenic in TA100 with S9 than without (8.7 rev/microg versus 1.0 rev/microg) and was >3 x more mutagenic in TA100 than in TA98--consistent with a prominent role for PAHs in the mutagenicity of the extract because PAHs are generally more mutagenic in the base-substitution strain TA100 than in the frameshift strain TA98. The extract induced only a hotspot mutation in TA98; another combustion emission, cigarette smoke condensate (CSC), also induces this single class of mutation. In TA100, the mutation spectra of the extract were not significantly different in the presence or absence of S9 and were primarily (78-86%) GC --> TA transversions. This mutation is induced to a similar extent by CSC (78%) and the PAH benzo[a]pyrene (B[a]P) (77%). The frequency of GC --> TA transversions induced in Salmonella by the extract (78-86%) is similar to the frequency of this mutation in the TP53 (76%) and KRAS (86%) genes of lung tumors from nonsmoking women exposed to smoky coal emissions. The mutation spectra of the extract reflect the presence of PAHs in the mixture and support a role for PAHs in the induction of the mutations and tumors due to exposure to smoky coal emissions.  相似文献   

5.
Since a KRAS oncogene mutation is an early event in colorectal cancer development and cigarette smoking is thought to have an effect on early stages of colorectal tumorigenesis, smoking, especially long-term smoking, may be associated with the risk for colorectal cancer with KRAS oncogene mutations. In the Netherlands Cohort Study on diet and cancer (n=120,852 men and women), using a case-cohort design, adjusted incidence rate ratios (RR) and 95% confidence intervals (CI) were computed for colorectal tumors with wild-type and with mutated KRAS gene, and with specific G:C-->T:A or G:C-->A:T point mutations in KRAS, according to cigarette smoking status, frequency, duration, pack years, age at first exposure, years since cessation, inhalation and filter usage. After 7.3 years and excluding the first 2.3 years, 648 cases and 4083 sub-cohort members were included in the analyses. Ex-smokers, but not current smokers, were at increased risk for colorectal cancer with wild-type KRAS gene tumors when compared with never smokers, albeit not statistically significant (RR 1.26, 95% CI 0.96-1.66). This was not observed for KRAS mutated tumors when comparing ex-smokers with never smokers (RR 1.15, 95% CI 0.79-1.66). The highest category of smoking frequency (>20 cigarettes/day) and inhalation of smoke were associated with an increased risk for colorectal cancer with wild-type KRAS gene tumors, though not statistically significant, when compared with never smoking (frequency: RR 1.24, 95% CI 0.90-1.71 and inhalation: RR 1.25, 95% CI 0.94-1.67). These associations were strongest in men (ex-smokers: RR 1.79, 95% CI 1.00-3.20; frequency: RR 1.91, 95% CI 1.03-3.52; inhalation: RR 1.69, 95% CI 0.94-3.04). No associations were observed between any of the smoking characteristics and the risk for colorectal cancer with mutated KRAS gene tumors, nor where there any clear associations with tumors with specific G:C-->A:T transitions or G:C-->T:A transversions. These results suggest that, in contrast to the hypothesis, smoking does not increase the risk for colorectal tumors with a mutated KRAS gene. Some smoking characteristics, i.e. being an ex-smoker, frequency and inhalation, may be associated with risk for colorectal cancer characterized by the wild-type KRAS gene, especially in men.  相似文献   

6.
The DNA adduct 8-amino-2'-deoxyguanosine (8-amino-dG) is found in liver DNA of rats treated with the hepatocarcinogen 2-nitropropane. Site-specifically modified oligodeoxynucleotides were used to explore the mutagenic potential of 8-amino-dG in simian kidney (COS-7) cells. Oligodeoxynucleotides (5'-TCCTCCTX1G2CCTCTC and 5'-TCCTCCTG1X2CCTCTC, X = dG or 8-amino-dG) with the lesion positioned at codon 60 or 61 of the non-coding strand of the human c-Ha- ras1 gene were inserted into single-stranded phagemid vectors and transfected into COS-7 cells. The progeny plasmid obtained was used to transform Escherichia coli DH10B. Transformants were analyzed by oligodeoxynucleotide hybridization and DNA sequencing to establish the mutation frequency and spectrum produced by the modified base. The correct base, dCMP, was incorporated preferentially opposite 8-amino-dG at X1and X2. When 8-amino-dG was at X1, targeted GNH2-->T transversions were detected, along with smaller numbers of GNH2-->A transitions and GNH2-->C transversions. When the adduct was at X2, only GNH2-->T transversions were observed. The frequencies of targeted mutation at X1and X2were 2.7 and 1.7%, respectively. Mutation frequency and mutagenic spectrum were sequence context dependent. In addition, non-targeted G-->T transversions, accompanied by some G-->A transitions, were detected 5' to 8-amino-dG when the lesion was at X2. We conclude that 8-amino-dG is a mutagenic lesion, generating G-->T and G-->C transversions and G-->A transitions in mammalian cells.  相似文献   

7.
Fapy.dG and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) are formed in DNA by hydroxyl radical damage. In order to study replication past these lesions in cells, we constructed a single-stranded shuttle vector containing the lesion in 5'-TGT and 5'-TGA sequence contexts. Replication of the modified vector in simian kidney (COS-7) cells showed that Fapy.dG is mutagenic inducing primarily targeted Fapy.G-->T transversions. In the 5'-TGT sequence mutational frequency of Fapy.dG was approximately 30%, whereas in the 5'-TGA sequence it was approximately 8%. In parallel studies 8-oxo-dG was found to be slightly less mutagenic than Fapy.dG, though it also exhibited a similar context effect: 4-fold G-->T transversions (24% versus 6%) occurred in the 5'-TGT sequence relative to 5'-TGA. To investigate a possible structural basis for the higher G-->T mutations induced by both lesions when their 3' neighbor was T, we carried out a molecular modeling investigation in the active site of DNA polymerase beta, which is known to incorporate both dCTP (no mutation) and dATP (G-->T substitution) opposite 8-oxo-G. In pol beta, the syn-8-oxo-G:dATP pair showed greater stacking with the 3'-T:A base pair in the 5'-TGT sequence compared with the 3'-A:T in the 5'-TGA sequence, whereas stacking for the anti-8-oxo-G:dCTP pair was similar in both 5'-TGT and 5'-TGA sequences. Similarly, syn-Fapy.G:dATP pairing showed greater stacking in the 5'-TGT sequence compared with the 5'-TGA sequence, while stacking for anti-Fapy.G:dCTP pairs was similar in the two sequences. Thus, for both lesions less efficient base stacking between the lesion:dATP pair and the 3'-A:T base pair in the 5'-TGA sequence might cause lower G-->T mutational frequencies in the 5'-TGA sequence compared to 5'-TGT. The corresponding lesions derived from 2'-deoxyadenosine, Fapy.dA and 8-oxo-dA, were not detectably mutagenic in the 5'-TAT sequence, and were only weakly mutagenic (<1%) in the 5'-TAA sequence context, where both lesions induced targeted A-->C transversions. To our knowledge this is the first investigation using extrachromosomal probes containing a Fapy.dG or Fapy.dA site-specifically incorporated, which showed unequivocally that in simian kidney cells Fapy.G-->T substitutions occur at a higher frequency than 8-oxo-G-->T and that Fapy.dA is very weakly mutagenic, as is 8-oxo-dA.  相似文献   

8.
The most abundant lesion formed in DNA upon modification with methylating agents 7-methylguanine, under alkaline conditions is converted into 2,6-diamino-4-hydroxy-5N-methyl-formamidopyrimidine (Fapy-7MeGua). We have previously shown that treatment of dimethylsulfate methylated DNA with NaOH creates mutagenic base derivatives leading to a 60-fold increase in the frequency of A-->G transitions and a 2-3-fold increase of G-->T and G-->C transversions. We have analyzed which lesions lead to these mutations. We compared mutagenic spectra in the lacZ gene of M13mp18 phage DNA modified with dimethylsulfate and NaOH after selective elimination of damaged bases from molecules used for transfection into SOS-induced E. coli. Partial elimination of Fapy-7MeGua from phage DNA performed by its digestion with formamidopyrimidine-DNA glycosylase resulted in a 2-3-fold decrease of G-->T and G-->C transversions. Selective depurination of methylated bases (9 h, 37 degrees C, pH 7.0) resulting in almost complete loss of 7MeAde as demonstrated by HPLC analysis of [3H]MNU alkylated phage DNA used as a probe, caused a dramatic, 9-fold decrease of A-->G transitions. Alkali-catalysed rearrangement of 7MeAde was followed by HPLC analysis of [3H]MNU alkylated poly(A) and poly(dA). After incubation of these oligonucleotides in NaOH, 7MeAde disappeared from both chromatograms, but only in polyA, 2 new peaks migrating with retention time different from that of 1MeAde, 3MeAde or 7MeAde were detected, suggesting formation of two rotameric forms of Fapy-7MeAde as observed for Fapy-7MeGua. Thus the miscoding lesion, giving rise to A-->G transitions derived from 7MeAde was Fapy-7MeAde. Fapy-7MeGua was at least an order of magnitude less mutagenic, but in SOS-induced cells it gave rise to G-->T and G-->C transversions.  相似文献   

9.
Lung cancer is primarily caused by exposure to tobacco smoke. Tobacco smoke contains numerous carcinogens, including polycyclic aromatic hydrocarbons (PAH). The most common PAH studied is benzo[a]pyrene (B[a]P). B[a]P is metabolically activated through multiple routes, one of which is catalyzed by aldo-keto reductase (AKR) to B[a]P-7,8-dione (BPQ). BPQ undergoes a futile redox cycle in the presence of NADPH to generate reactive oxygen species (ROS). ROS, in turn, damages DNA. Studies with a yeast p53 mutagenesis system found that the generation of ROS by PAH o-quinones may contribute to lung carcinogenesis because of similarities between the patterns (types of mutations) and spectra (location of mutations) and those seen in lung cancer. The patterns were dominated by G to T transversions, and the spectra in the experimental system have mutations at lung cancer hotspots. To address repair mechanisms that are responsible for BPQ induced damage we observed the effect of mutating two DNA repair genes OGG1 and APE1 (APN1 in yeast) and tested them in a yeast reporter system for p53 mutagenesis. There was an increase in both the mutant frequency and the number of G:C/T:A transversions in p53 treated with BPQ in ogg1 yeast but not in apn1 yeast. Knocking out APN2 increased mutagenesis in the apn1 cells. In addition, we did not find a strand bias on p53 treated with BPQ in ogg1 yeast. These studies suggest that Ogg1 is involved in repairing the oxidative damage caused by BPQ, Apn1 and Apn2 have redundant functions and that the stand bias seen in lung cancer may not be due to impaired repair of oxidative lesions.  相似文献   

10.
Cigarette smoking is associated with human cancers. It has been reported that most of the lung cancer deaths are caused by cigarette smoking (5,6,7,12). Although tobacco tars and related products in the particle phase of cigarette smoke are major causes of carcinogenic and mutagenic related diseases, cigarette smoke contains significant amounts of free radicals that are also considered as an important group of carcinogens(9,10). Free radicals attack cell constituents by damaging protein structure, lipids and DNA sequences and increase the risks of developing various types of cancers. Inhaled radicals produce adducts that contribute to many of the negative health effects of tobacco smoke in the lung(3). Studies have been conducted to reduce free radicals in cigarette smoke to decrease risks of the smoking-induced damage. It has been reported that haemoglobin and heme-containing compounds could partially scavenge nitric oxide, reactive oxidants and carcinogenic volatile nitrosocompounds of cigarette smoke(4). A 'bio-filter' consisted of haemoglobin and activated carbon was used to scavenge the free radicals and to remove up to 90% of the free radicals from cigarette smoke(14). However, due to the cost-ineffectiveness, it has not been successfully commercialized. Another study showed good scavenging efficiency of shikonin, a component of Chinese herbal medicine(8). In the present study, we report a protocol for introducing common natural antioxidant extracts into the cigarette filter for scavenging gas phase free radicals in cigarette smoke and measurement of the scavenge effect on gas phase free radicals in mainstream cigarette smoke (MCS) using spin-trapping Electron Spin Resonance (ESR) Spectroscopy(1,2,14). We showed high scavenging capacity of lycopene and grape seed extract which could point to their future application in cigarette filters. An important advantage of these prospective scavengers is that they can be obtained in large quantities from byproducts of tomato or wine industry respectively(11,13).  相似文献   

11.
12.
Pulmonary tuberculosis (TB), caused by Mycobacterium tuberculosis, is the leading cause of death due to a bacterial pathogen. Emerging epidemiologic evidence suggests that the leading risk factor associated with TB mortality is cigarette smoke exposure. Despite this, it remains poorly understood what is the effect of cigarette smoke exposure on anti-TB immunity and whether its potential detrimental effect can be reversed by cigarette smoking cessation. In our current study, we have investigated the impact of both continuous and discontinuous cigarette smoke exposure on the development of anti-mycobacterial type 1 immunity in murine models. We find that while continuous cigarette smoke exposure severely impairs type 1 immunity in the lung, a short-term smoking cessation allows rapid restoration of anti-mycobacterial immunity. The ability of continuous cigarette smoke exposure to dampen type 1 protective immunity is attributed locally to its affects on innate immune cells in the lung. Continuous cigarette smoke exposure locally, by not systemically, impairs APC accumulation and their production of TNF, IL-12, and RANTES, blunts the recruitment of CD4+IFN-γ+ T cells to the lung, and weakens the formation of granuloma. On the other hand, smoking cessation was found to help restore type 1 immunity by rapidly improving the functionality of lung APCs, enhancing the recruitment of CD4+IFN-γ+ T cells to the lung, and promoting the formation of granuloma. Our study for the first time demonstrates that continuous, but not discontinuous, cigarette smoke exposure severely impedes the lung expression of anti-TB Th1 immunity via inhibiting innate immune activation and lung T cell recruitment. Our findings thus suggest cigarette smoking cessation to be beneficial to the control of pulmonary TB.  相似文献   

13.
Extracts and smoke condensates of marijuana, Transkei home-grown tobacco and also commercial cigarette tobaccos were assayed for their mutagenic activity to Salmonella typhimurium strains TA98, TA100, TA1535, TA1537 and TA1538, both with and without metabolic activation. No mutagenic activity was detected in dichloromethane extracts of marijuana and tobacco per se, but all the smoke condensates exhibited mutagenicity with metabolic activation. The only strain not mutated by any of the pyrolyzates was TA1535. Transkei tobacco pyrolyzate proved to be the most mutagenic, followed by marijuana, pipe and cigarette tobacco. Mutagenicity was positively associated with the nitrogen content of the various products. The potent mutagenic action of marijuana smoke condensate, coupled with a condensate yield of more than 50% higher than that of cigarette and pipe tobacco, indicates a high carcinogenic risk associated with marijuana smoking.  相似文献   

14.
We recently observed a significantly increased risk for lung cancer in carriers of p53 germline mutations. Because cigarette smoking is known to play an important role in increasing the risk for lung cancer in the general population, we wanted to determine the role of cigarette smoking in lung cancer risk in people with a genetic susceptibility based on a p53 germline mutation. We studied 1263 people from 97 families enrolled in a cohort study of families systematically ascertained through childhood soft-tissue sarcoma patients treated at the M.D. Anderson Cancer Center, University of Texas, between 1944 and 1975. We assessed the incidence of lung and smoking-related cancers in 33 carriers of germline p53 mutations and in 1,230 noncarriers to determine whether there was an association between an inherited cancer predisposition, cigarette smoking, and cancer risk. We analyzed the association between cigarette smoking, mutation status, and lung and other smoking-related cancers by the Kaplan-Meier method and the Cox proportional hazards model with adjustments for birth year, race, and sex. In the hazards model, we incorporated a robust variance estimation to adjust for familial correlation. We observed an increased risk of a variety of histological types of lung cancer in the carriers of the p53 germline mutation. Mutation carriers who smoked had a 3.16-fold (95% confidence interval =1.48–6.78) higher risk for lung cancer than the mutation carriers who did not smoke. Our results demonstrate that cigarette smoking significantly increases lung cancer risk in carriers of a germline p53 mutation. This finding could be useful in designing strategies for early detection and treatment of lung and smoking-related cancers in individuals with this inherited cancer predisposition.  相似文献   

15.
Tobacco smoke contains substances capable of binding iron in an aqueous medium and transferring the metal into both organic solvents and intact mammalian red cells. This iron-binding activity is due to free fatty acids which are abundant in tobacco smoke and form 2:1 (free fatty acid:iron) chelates with ferrous iron. These earlier observations suggested that smoke-borne free fatty acids and the associated delocalization of iron within the lung might contribute to both the chronic pulmonary inflammation and the carcinogenesis associated with smoking. We now report that micromolar concentrations of iron or free fatty acid are not toxic to cultured human lung fibroblasts. However, when combined, the same low concentrations of iron and free fatty acid exert synergistic toxicity. Furthermore, the combination of free fatty acid and iron is highly mutagenic, inducing almost as many selectable mutations in the gene for hypoxanthine/guanine phosphoribosyl transferase as does benzo[a]pyrenediolepoxide, a class I carcinogen generated from benzo[a]pyrene present in cigarette smoke. The combination of free fatty acid and iron also promotes transformation of NIH 3T3 cells into an anchorage-independent phenotype. We conclude that free fatty acids in tobacco smoke may be important contributors to both the pulmonary damage and the carcinogenesis associated with smoking.  相似文献   

16.
The mutational pattern for the TP53 tumour suppressor gene in lung tumours differs to other cancer types by having a higher frequency of G:C>T:A transversions. The aetiology of this differing mutation pattern is still unknown. Benzo[a]pyrene,diol epoxide (BPDE) is a potent cigarette smoke carcinogen that forms guanine adducts at TP53 CpG mutation hotspot sites including codons 157, 158, 245, 248 and 273. We performed molecular modelling of BPDE-adducted TP53 duplex sequences to determine the degree of local distortion caused by adducts which could influence the ability of nucleotide excision repair. We show that BPDE adducted codon 157 has greater structural distortion than other TP53 G:C>T:A hotspot sites and that sequence context more distal to adjacent bases must influence local distortion. Using TP53 trinucleotide mutation signatures for lung cancer in smokers and non-smokers we further show that codons 157 and 273 have the highest mutation probability in smokers. Combining this information with adduct structural data we predict that G:C>T:A mutations at codon 157 in lung tumours of smokers are predominantly caused by BPDE. Our results provide insight into how different DNA sequence contexts show variability in DNA distortion at mutagen adduct sites that could compromise DNA repair at well characterized cancer related mutation hotspots.  相似文献   

17.
Cigarette smoking has long been tied to a multitude of poor health outcomes; however, in reproductive biology, smoking has shown several unintuitive findings. Smoking is associated with significantly decreased rates of endometriosis and endometrial cancer. Here, we show that treatment with cigarette smoke extract leads to increased mRNA and protein expression of homeobox A10 (HOXA10) and progesterone receptor (PGR) as well as more rapid decidualization of endometrial stromal cells in vitro. In vivo, mice exposed to cigarette smoke similarly showed increased expression of HOXA10 and PGR in the endometrium. Both HOXA10 and PGR drive endometrial differentiation and are suppressed in endometrial tumors and in endometriosis. The increased expression found upon exposure to cigarette smoke may provide a protective effect, mediating the decreased incidence of endometrial disease among smokers. This mechanism contrasts with the accepted paradigm that the effects of smoking on the uterus are secondary to ovarian alterations rather than direct effects on endometrium as demonstrated here.  相似文献   

18.
All exonic CG sequences in p53 are methylated; this epigenetic modification is correlated with frequent G:C-->A:T transitions in p53. Recent reports reveal the presence in p53 of non-CG methylation in CC and CCC sequences, complementary to sites of selective guanosine adduct formation (GG and GGG), and the association of genetic instability with methylation at repetitive sequences. We presently investigated the distribution of methylation sites and repetitive elements in silent and nonsense p53 mutations (2051) among the IARC's TP53 somatic mutation database for exons 5-8. Silent mutations are nonrandom, but mostly involve G:C-->A:T transitions (62%); in particular C-->T mutations (39% of all silent mutations) are mostly correlated with CC and CCC sequences, while G-->A mutations with GG sequences. Sequence analysis of all non-G:C-->A:T silent mutations reveals the frequent formation of new methylation sites (CG), new CCC and GGG sequences in the resulting sequence, refinement of symmetry elements at interrupted microsatellite-like sequences and formation of small repeats (55.3%). The G:C-->A:T silent mutations characterize cancers associated with cigarette smoking (e.g. bladder or lung and bronchus cancer versus colorectal cancer); on the contrary, non-G:C-->A:T silent mutations have similar frequencies in most cancers. Nonsense mutations in exons 5-8, all resulting in mutants lacking amino acids 307-393, which are crucial for p53 activity, were also analyzed. The frequency of nonsense mutations is higher at methylated sites or repeats 1-2 nucleotides removed from methylation sites. Frameshift mutations are also more frequent at repeated sequences. The frequent G:C-->A:T silent mutations could indicate that CC and CCC sequences of exons 5-8 are occasionally targets of non-CpG methylation of cytosine. This process of de novo methylation in the presence of microsatellite-like sequences and small repeats might influence the genetic stability of a variety of genes.  相似文献   

19.
A study of the relation between smoking habits and lung cancer in male industrial workers over a period of three years has confirmed the earlier findings in doctors that the death-rate from lung cancer correlates closely with the number of cigarettes smoked. Of 54,460 men studied 68.7% were current cigarette smokers. The annual mortality rate from lung cancer was 0.33 per thousand in non-smokers and ex-smokers, and 1.2 per thousand for all cigarette smokers, and higher in heavy smokers.Heavy cigarette smokers who retained the cigarette in the mouth between puffs (“drooping” cigarette habit) had an annual mortality rate of 4.1 per thousand.The mortality from coronary thrombosis in smokers was nearly three times that in non-smokers. A mortality gradient with rising consumption of cigarettes was observed.Some correlation between smoking and cancer of other sites and from non-neoplastic lung disease was observed in older men, but no correlation was found with other cardiovascular diseases and cerebrovascular diseases.  相似文献   

20.
One of the most consistently observed exposure-disease relationship is the one between cigarette smoking and lung cancer. Aromatic amines and their metabolites are found in tobacco smoke and may be a class of carcinogen involved in lung carcinogenesis. T he human N -acetyltransferase 1 ( NAT 1 ) enzyme can activate or deactivate aromatic amines, making it a candidate genetic susceptibility gene. We evaluated the potential role of the NAT 1 gene in lung cancer risk in a hospital-based case-control study in a minority population composed of Mexican- and African-Americans. We also assessed the potential interaction between NAT 1 and other environmental exposures such as cigarette smoking. T here was no overall association between the NAT1*10 genotypes and lung cancer risk. T he adjusted odds ratio for the rapid acetylation genotypes was 0 72 (95 % CI 0 37-1 39) for NAT1 defined as the presence of at least one copy of the NAT1*10 allele when compared with all genotypes without the NAT1*10 allele. Analyses by histological subtype or smoking history did not alter these findings. Other NAT 1 alleles will need to be studied for more conclusive results regarding the relevance of NAT 1 activity to lung carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号