首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glycerol inhibits the in vitro self-association of monomeric collagen into fibrils and induces the dissociation of fibrils preassembled from NaBH4-reduced collagen. These effects were investigated in an effort to understand the mechanism of fibril assembly of the protein. In PS buffer (0.03 M NaPi and 0.1 M NaCl, pH 7.0) containing 0.1-1.0 M glycerol, the self-association of type I collagen from calf skin took place only if the protein concentration was above a critical value. This critical protein concentration increased with increasing glycerol concentration. Velocity sedimentation studies showed that below the critical protein concentration and under fibril assembly conditions, the collagen was predominantly in a monomeric state. Electron microscopic examinations revealed that the collagen aggregates formed above the critical concentration consisted mostly of microfibrils of 3-5-nm diameter along with some banded fibrils were found. Collagen treated with pepsin to remove its nonhelical telopeptides also self-associated into microfibrils and fibrils in the presence of glycerol, but the reaction did not exhibit any critical concentration. These results are consistent with a mechanism of in vitro collagen fibril assembly which involves the initial formation of microfibrils through a helical cooperative mechanism. They also suggest that contacts of the nonhelical telopeptides of each collagen with its neighboring molecules provide the necessary negative free energy change for the cooperativity and that subsequent lateral association of the microfibrils leads to banded fibrils.  相似文献   

2.
The kinetics of in vitro fibril assembly of Type I collagen preparations that contain different amounts of covalently cross-linked oligomers was studied with turbidimetry. Fibril formation showed a lag phase with no solution turbidity and a growth phase with a sigmoidal increase in the solution turbidity. The length of the lag phase was inversely related to both the total collagen concentration and the amount of covalently cross-linked oligomers in the solution. Double logarithmic plots of t1/4, the amount of time it takes for 1/4 of the collagen to assemble into fibrils, versus the total collagen concentration were linear but the slope decreased from -0.84 to -2.3 with decreasing amounts of covalently cross-linked oligomers in the samples. Electron microscopy showed the formation of unbanded microfibrils with diameters in the range of 3-15 nm early in the lag phase and larger diameter banded fibrils coexisting with the microfibrils near the end of the lag phase. Centrifugation of the solution at the lag phase prolonged the lag time, presumably by removal of microfibrils, but subsequent growth of the fibrils was unaffected. The results suggest a cooperative nucleation-growth mechanism for the in vitro assembly of collagen fibrils which is consistent with the results of an equilibrium study of the fibril assembly reaction we reported earlier (Na, G. C., Butz, L. J., Bailey, D. G., and Carroll, R. J. (1986) Biochemistry 25, 958-966).  相似文献   

3.
M F Paige  J K Rainey    M C Goh 《Biophysical journal》1998,74(6):3211-3216
Fibrous long spacing collagen (FLS) fibrils are collagen fibrils in which the periodicity is clearly greater than the 67-nm periodicity of native collagen. FLS fibrils were formed in vitro by the addition of alpha1-acid glycoprotein to an acidified solution of monomeric collagen and were imaged with atomic force microscopy. The fibrils formed were typically approximately 150 nm in diameter and had a distinct banding pattern with a 250-nm periodicity. At higher resolution, the mature FLS fibrils showed ultrastructure, both on the bands and in the interband region, which appears as protofibrils aligned along the main fibril axis. The alignment of protofibrils produced grooves along the main fibril, which were 2 nm deep and 20 nm in width. Examination of the tips of FLS fibrils suggests that they grow via the merging of protofibrils to the tip, followed by the entanglement and, ultimately, the tight packing of protofibrils. A comparison is made with native collagen in terms of structure and mechanism of assembly.  相似文献   

4.
Cartilage fibrils contain collagen II as the major constituent, but the presence of additional components, minor collagens, and noncollagenous glycoproteins is thought to be crucial for modulating several fibril properties. We have examined the distribution of two fibril constituents—decorin and collagen IX—in samples of fibril fragments obtained after bovine cartilage homogenization. Decorin was preferentially associated with a population of thicker fibril fragments from adult articular cartilage, but was not present on the thinnest fibrils. The binding was specific for the gap regions of the fibrils, and depended on the decorin core protein. Collagen IX, by contrast, predominated in the population with the thinnest fibrils, and was scarce on wider fibrils. Double-labeling experiments demonstrated the coexistence of decorin and collagen IX in some fibrils of intermediate diameter, although most fibril fragments from adult cartilage were strongly positive for one component and lacked the other. Fibril fragments from fetal epiphyseal cartilage showed a different pattern, with decorin and collagen IX frequently colocalized on fragments of intermediate and large diameters. Hence, the presence of collagen IX was not exclusive for fibrils of small diameter. These results establish that articular cartilage fibrils are biochemically heterogeneous. Different populations of fibrils share collagen II, but have distinct compositions with respect to macromolecules defining their surface properties.  相似文献   

5.
Summary Suspensions of collagen fibrils obtained from derma of Elasmobranchia and Actinopterygia of different body sizes and developmental stages were examined by transmission electron microscopy. Fibril diameters were measured and classified into groups comprising a 20 nm diameter interval. Diagrams showing fibril populations of each fish were made. The measurements were averaged and their confidence intervals and standard errors determined. For each species other diagrams were plotted in which the mean diameters were correlated to the body length of each sample. The results show that: 1) a correlation exists between an increase in diameter of collagen fibrils and somatic growth until sexual maturity is reached; 2) fibril populations are subsequently spread over a wider range due to the presence in the derma of classes of newly formed and therefore thinner fibrils. The deposition of new fibrils is possibly influenced by individual factors; 3) no relationship exists between mean fibril diameter and body size; 4) no relationship exists between phylogenetic position and pattern of diameter distribution.Research supported by a grant from C.N.R. Roma (69.02087.0115.1150)  相似文献   

6.
Hill SE  Miti T  Richmond T  Muschol M 《PloS one》2011,6(4):e18171
Formation of large protein fibrils with a characteristic cross β-sheet architecture is the key indicator for a wide variety of systemic and neurodegenerative amyloid diseases. Recent experiments have strongly implicated oligomeric intermediates, transiently formed during fibril assembly, as critical contributors to cellular toxicity in amyloid diseases. At the same time, amyloid fibril assembly can proceed along different assembly pathways that might or might not involve such oligomeric intermediates. Elucidating the mechanisms that determine whether fibril formation proceeds along non-oligomeric or oligomeric pathways, therefore, is important not just for understanding amyloid fibril assembly at the molecular level but also for developing new targets for intervening with fibril formation. We have investigated fibril formation by hen egg white lysozyme, an enzyme for which human variants underlie non-neuropathic amyloidosis. Using a combination of static and dynamic light scattering, atomic force microscopy and circular dichroism, we find that amyloidogenic lysozyme monomers switch between three different assembly pathways: from monomeric to oligomeric fibril assembly and, eventually, disordered precipitation as the ionic strength of the solution increases. Fibril assembly only occurred under conditions of net repulsion among the amyloidogenic monomers while net attraction caused precipitation. The transition from monomeric to oligomeric fibril assembly, in turn, occurred as salt-mediated charge screening reduced repulsion among individual charged residues on the same monomer. We suggest a model of amyloid fibril formation in which repulsive charge interactions are a prerequisite for ordered fibril assembly. Furthermore, the spatial extent of non-specific charge screening selects between monomeric and oligomeric assembly pathways by affecting which subset of denatured states can form suitable intermolecular bonds and by altering the energetic and entropic requirements for the initial intermediates emerging along the monomeric vs. oligomeric assembly path.  相似文献   

7.
Collagen fibrils form extracellular networks that regulate cell functions and provide mechanical strength to tissues. Collagen fibrillogenesis is an entropy-driven process promoted by warming and reversed by cooling. Here, we investigate the influence of noncovalent interactions mediated by the collagen triple helix on fibril stability. We measure the kinetics of cold-induced disassembly of fibrils formed from purified collagen I using turbimetry, probe the fibril morphology by atomic force microscopy, and measure the network connectivity by confocal microscopy and rheometry. We demonstrate that collagen fibrils disassemble by subunit release from their sides as well as their ends, with complex kinetics involving an initial fast release followed by a slow release. Surprisingly, the fibrils are gradually stabilized over time, leading to thermal memory. This dynamic stabilization may reflect structural plasticity of the collagen fibrils arising from their complex structure. In addition, we propose that the polymeric nature of collagen monomers may lead to slow kinetics of subunit desorption from the fibril surface. Dynamic stabilization of fibrils may be relevant in the initial stages of collagen assembly during embryogenesis, fibrosis, and wound healing. Moreover, our results are relevant for tissue repair and drug delivery applications, where it is crucial to control fibril stability.  相似文献   

8.
1. Developing tail tendons from rats (19-day foetal to 126 days post partum) were examined by electron microscopy after staining for proteoglycan with a cationic copper phthalocyanin dye. Cuprolinic Blue, in a "critical electrolyte concentration" method. Hydroxyproline was measured on papain digests of tendons, from which glycosaminoglycuronans were isolated, characterized and quantified. 2. Mean collagen fibril diameters increased more than 10-fold with age according to a sigmoid curve, the rapid growth phase 2 being during 30-90 days after conception. Fibril periodicities were considerably smaller (50-55 nm) in phases 1 and 2 than in phase 3 (greater than 62 nm). 3. Dermatan sulphate is the main glycosaminoglycuronan in mature tendon. Chondroitin sulphate and hyaluronate preponderate in foetal tissue. 4. Proteoglycan was seen around but not inside collagen fibrils. Proteoglycan and collagen were quantified from electron micrographs. Their ratios behaved similarly to uronic acid/hydroxyproline and hyaluronate/hydroxyproline ratios, which decreased rapidly around birth, and then levelled off to a low plateau coincident with the onset of rapid growth in collagen fibril diameter. 5. Dermatan sulphate/hydroxyproline ratios suggest that the proteoglycan orthogonal array around the fibril is largely dermatan sulphate. In the foetus hyaluronate and chondroitin sulphate exceed that expected to be bound to collagen. 6. An inhibiting action of chondroitin sulphate-rich proteoglycan on fibril diameter growth is suggested. 7. The distributions of hyaluronate, chondroitin sulphate and dermatan sulphate are discussed in the light of secondary structures suggested to be present in hyaluronate and chondroitin sulphate, but not in dermatan sulphate.  相似文献   

9.
The assembly of collagen fibrils as a function of temperature and collagen concentration was studied. It was shown that temperature increases from 25 to 35 degrees C, the degree of ordering of collagen fibrils increases 1.5-fold at collagen concentration above 1 mg/ml and 2-fold at low collagen concentration. A maximum ordering of fibril structure occurs under conditions close to physiological (T approximately 35 degrees C and collagen concentration 1.2 mg/ml). As temperature is elevated from 30 to 35 degrees C, the packing of collagen molecules in fibrils becomes more ordered: the values of enthalpy and entropy of the transition of fibrils from the native to a disordered state decrease at all collagen concentrations used. At high collagen concentration, the dimensions of cooperative blocks in fibrils formed at 25 and 30 degrees C coincide with those of cooperative blocks of monomeric collagen in solution. Upon increasing the temperature to 35 degrees C, the dimensions of cooperative blocks increase.  相似文献   

10.
Magnesium (Mg) biomaterials are a new generation of biodegradable materials and have promising potential for orthopedic applications. After implantation in bone tissues, these materials will directly interact with extracellular matrix (ECM) biomolecules and bone cells. Type I collagen, the major component of bone ECM, forms the architecture scaffold that provides physical support for bone cell attachment. However, it is still unknown how Mg substrate affects collagen assembly on top of it as well as subsequent cell attachment and growth. Here, we studied the effects of collagen monomer concentration, pH, assembly time, and surface roughness of two Mg materials (pure Mg and AZ31) on collagen fibril formation. Results showed that formation of fibrils would not initiate until the monomer concentration reached a certain level depending on the type of Mg material. The thickness of collagen fibril increased with the increase of assembly time. The structures of collagen fibrils formed on semi-rough surfaces of Mg materials have a high similarity to that of native bone collagen. Next, cell attachment and growth after collagen assembly were examined. Materials with rough surface showed higher collagen adsorption but compromised bone cell attachment. Interestingly, surface roughness and collagen structure did not affect cell growth on AZ31 for up to a week. Findings from this work provide some insightful information on Mg-tissue interaction at the interface and guidance for future surface modifications of Mg biomaterials.  相似文献   

11.
The synthesis of an extracellular matrix containing long (approximately mm in length) collagen fibrils is fundamental to the normal morphogenesis of animal tissues. In this study we have direct evidence that fibroblasts synthesise transient early fibril intermediates (approximately 1 micrometer in length) that interact by tip-to-tip fusion to generate long fibrils seen in older tissues. Examination of early collagen fibrils from tendon showed that two types of early fibrils occur: unipolar fibrils (with carboxyl (C) and amino (N) ends) and bipolar fibrils (with two N-ends). End-to-end fusion requires the C-end of a unipolar fibril. Proteoglycans coated the shafts of the fibrils but not the tips. In the absence of proteoglycans the fibrils aggregated by side-to-side interactions. Therefore, proteoglycans promote tip-to-tip fusion and inhibit side-to-side fusion. This distribution of proteoglycan along the fibril required co-assembly of collagen and proteoglycan prior to fibril assembly. The study showed that collagen fibrillogenesis is a hierarchical process that depends on the unique structure of unipolar fibrils and a novel function of proteoglycans.  相似文献   

12.
Connective tissue mechanical behavior is primarily determined by the composition and organization of collagen. In ligaments and tendons, type I collagen is the principal structural element of the extracellular matrix, which acts to transmit force between bones or bone and muscle, respectively. Therefore, characterization of collagen fibril morphology and organization in fetal and skeletally mature animals is essential to understanding how tissues develop and obtain their mechanical attributes. In this study, tendons and ligaments from fetal rat, bovine, and feline, and mature rat were examined with scanning electron microscopy. At early fetal developmental stages, collagen fibrils show fibril overlap and interweaving, apparent fibril ends, and numerous bifurcating/fusing fibrils. Late in fetal development, collagen fibril ends are still present and fibril bundles (fibers) are clearly visible. Examination of collagen fibrils from skeletally mature tissues, reveals highly organized regions but still include fibril interweaving, and regions that are more randomly organized. Fibril bifurcations/fusions are still present in mature tissues but are less numerous than in fetal tissue. To address the continuity of fibrils in mature tissues, fibrils were examined in individual micrographs and consecutive overlaid micrographs. Extensive microscopic analysis of mature tendons and ligaments detected no fibril ends. These data strongly suggest that fibrils in mature ligament and tendon are either continuous or functionally continuous. Based upon this information and published data, we conclude that force within these tissues is directly transferred through collagen fibrils and not through an interfibrillar coupling, such as a proteoglycan bridge.  相似文献   

13.
The formation in vitro of fibrils from type I acid-soluble calf skin collagen has been studied before and after removal of the extrahelical peptides with carboxypeptidase and with pepsin. Turbidimetric studies show that the mechanism of fibril growth in undigested collagen is similar to that in pepsin-digested collagen; following carboxypeptidase digestion, however, a different growth mechanism was apparent. The two mechanisms have been further characterized by electron microscopy. In the course of formation of fibrils from undigested collagen, “early fibrils” (short D-periodic fibrils that have both ends visible) occurred in the lag phase under the precipitating conditions employed here. After pepsin or carboxypeptidase digestion of the collagen no “early fibrils” were seen. In carboxypeptidase-digested collagen, lateral assembly was inhibited; after pepsin digestion, linear assembly was inhibited. Complete removal of the extrahelical peptides prevented fibril formation under the conditions used here. Electron-optical examination of segment-long-spacing (SLS) dimers established a more complete removal of the C-terminal peptide after carboxypeptidase digestion than after pepsin digestion. Analyses of staining patterns of SLS dimers and fibrils from undigested and digested samples showed that the C-terminal peptide in SLS crystallites and fibrils formed from undigested collagen is in a condensed conformation. A proposed conformation, in which condensation occurs predominantly in a hydrophobic region at the proximal end of the C-terminal peptide, is discussed in terms of a dual role for the C-terminal peptide in fibrillogenesis. One role, shared with the N-terminal peptide, is to participate in interactions between the 4D-staggered molecules leading to the formation of linear aggregates; the other is to participate in interactions between these linear aggregates giving rise to D-periodic aggregates and lateral (as well as linear) growth.  相似文献   

14.
Light chain (or AL) amyloidosis is characterized by the pathological deposition of insoluble fibrils of immunoglobulin light chain fragments in various tissues, walls of blood vessels, and basement membranes. In the present investigation, the in vitro assembly of a recombinant amyloidogenic light chain variable domain, SMA, on various surfaces was monitored using atomic force microscopy. SMA formed fibrils on native mica at pH 5.0, conditions under which predominantly amorphous aggregates form in solution. Fibril formation was accelerated significantly on surfaces compared with solution; for example, fibrils grew on surfaces at significantly faster rates and at much lower concentrations than in solution. No fibrils were observed on hydrophobic or positively charged surfaces or at pH >7.0. Two novel types of fibril growth were observed on the surface: bidirectional linear assembly of oligomeric units, and linear growth from preformed amorphous cores. In addition to catalyzing the rate of fibrillation, the mechanism of fibril formation on the surfaces was significantly different from in solution, but it may be more physiologically relevant because in vivo the deposits are associated with surfaces.  相似文献   

15.
G C Na  L J Phillips  E I Freire 《Biochemistry》1989,28(18):7153-7161
The in vitro fibril assembly of calf skin collagen was examined as a function of ionic strength and temperature. In a 0.03 M NaPi, pH 7.0, buffer, fibril assembly required a minimum critical concentration of collagen. At nearly physiological ionic strengths and temperatures, the critical concentration was less than 1 microgram/mL and required a very sensitive method for measurement. Raising the ionic strength of the buffer resulted first in higher and then lower critical concentrations. Raising the temperature led to lower critical concentrations. A van't Hoff plot of the fibril growth constant calculated from the critical concentration gave positive enthalpy changes and positive heat capacity changes which indicate that the fibril growth is driven by both hydrophobic and ionic inter-collagen interactions. Sedimentation equilibrium studies showed the collagen to be monomeric at subcritical concentrations. Differential scanning microcalorimetric studies showed only one very sharp heat absorption peak for the fibril assembly which coincided with the appearance of solution turbidity. Within experimental error, the enthalpy changes of the fibril assembly measured with the microcalorimeter were of the same magnitude as the van't Hoff enthalpy changes. These results are discussed in light of a cooperative nucleation-growth mechanism of collagen fibril assembly proposed earlier.  相似文献   

16.
We report investigations of the morphology and molecular structure of amyloid fibrils comprised of residues 10-40 of the Alzheimer's beta-amyloid peptide (Abeta(10-40)), prepared under various solution conditions and degrees of agitation. Omission of residues 1-9 from the full-length Alzheimer's beta-amyloid peptide (Abeta(1-40)) did not prevent the peptide from forming amyloid fibrils or eliminate fibril polymorphism. These results are consistent with residues 1-9 being disordered in Abeta(1-40) fibrils, and show that fibril polymorphism is not a consequence of disorder in residues 1-9. Fibril morphology was analyzed by atomic force and electron microscopy, and secondary structure and inter-side-chain proximity were probed using solid-state NMR. Abeta(1-40) fibrils were found to be structurally compatible with Abeta(10-40): Abeta(1-40) fibril fragments were used to seed the growth of Abeta(10-40) fibrils, with propagation of fibril morphology and molecular structure. In addition, comparison of lyophilized and hydrated fibril samples revealed no effect of hydration on molecular structure, indicating that Abeta(10-40) fibrils are unlikely to contain bulk water.  相似文献   

17.
Collagen fibrils from sea cucumber (class Holothuroidea) dermis were previously found to grow by coordinated monomer addition at both centers and ends. This analysis of sea urchin (class Echinoidea) collagen fibrils was undertaken to compare the growth characteristics of fibrils from two classes of echinoderms, and to determine whether a single growth model could account for the main features of fibrils from these two taxa. Native collagen fibrils (37-431 micrometer long) from the spine ligaments of the sea urchin Eucidaris tribuloides were studied by scanning transmission electron microscopy and image analysis. The analyses revealed the mass per unit length, and hence the number of molecules in cross-section, along the entire length of each fibril. The fibrils were symmetrically spindle shaped. The maximum mass per unit length occurred in the center of each fibril, where the fibril contains anti-parallel molecules in equal numbers. The two pointed tips of each fibril showed similar linear axial mass distributions, indicating that the two tips retain shape and size similarity throughout growth. The linear axial mass distributions showed that the tips were paraboloidal, similar to those of vertebrate and sea cucumber fibrils. The computed maximum diameters of the fibrils increased linearly with fibril length. The overall shapes of the fibrils showed that they retain geometric similarity throughout growth. Computer modeling showed that the simplest self-assembly mechanism that can account for the features of these fibrils, and of the sea cucumber fibrils that have been described, is one in which the fibril tips produce independent axial growth, while lateral growth takes place through a surface nucleation and propagation mechanism. This mechanism produces coordinated growth in length and diameter as well as geometric similarity, characteristic features of echinoderm collagen fibrils.  相似文献   

18.
Previous observations with type I collagen from a proband with lethal osteogenesis imperfecta demonstrated that type I collagen containing a substitution of cysteine for glycine alpha 1-748 copolymerized with normal type I collagen (Kadler, K. E., Torre-Blanco, A., Adachi, E., Vogel, B. E., Hojima, Y., and Prockop, D. J. (1991) Biochemistry 30, 5081-5088). Here, three preparations containing normal type I procollagen and type I procollagen with a substitution of cysteine for glycine alpha 1-175, glycine alpha 1-691, or glycine alpha 1-988 were purified from cultured skin fibroblasts from probands with osteogenesis imperfecta. The procollagens were then used as substrates in a system for assaying the self-assembly of type I collagen into fibrils. The cysteine-substituted collagens in all three preparations were incorporated into fibrils. The cysteine alpha 1-175 and cysteine alpha 1-691 collagens were shown to increase the lag time and decrease the propagation rate constant for fibril assembly. All three preparations containing cysteine-substituted collagens formed fibrils with diameters that were two to four times the diameter of fibrils formed under the same conditions by normal type I collagen. Also, the three preparations containing cysteine substituted collagens had higher solubilities than normal type I collagen. The results, therefore, demonstrated that the three cysteine-substituted collagens copolymerized with normal type I collagen. The effects of the mutated collagens on fibril assembly can be understood in terms of a recently proposed model of fibril growth from symmetrical tips by assuming that the mutated monomers partially inhibit tip growth but not lateral growth of the fibrils. Of special interest was the observation that the Cys alpha 1-175 collagen from a proband with a non-lethal variant of osteogenesis imperfecta had quantitatively less effect on several parameters of fibril assembly at 37 degrees C than cysteine-substituted collagens from three probands with lethal variants of the disease.  相似文献   

19.
COMP acts as a catalyst in collagen fibrillogenesis   总被引:1,自引:0,他引:1  
We have previously reported that COMP (cartilage oligomeric matrix protein) is prominent in cartilage but is also present in tendon and binds to collagens I and II with high affinity. Here we show that COMP influences the fibril formation of these collagens. Fibril formation in the presence of pentameric COMP was much faster, and the amount of collagen in fibrillar form was markedly increased. Monomeric COMP, lacking the N-terminal coiled-coil linker domain, decelerated fibrillogenesis. The data show that stimulation of collagen fibrillogenesis depends on the pentameric nature of COMP and not only on collagen binding. COMP interacts primarily with free collagen I and II molecules, bringing several molecules to close proximity, apparently promoting further assembly. These assemblies further join in discrete steps to a narrow distribution of completed fibril diameters of 149 +/- 16 nm with a banding pattern of 67 nm. COMP is not found associated with the mature fibril and dissociates from the collagen molecules or their early assemblies. However, a few COMP molecules are found bound to more loosely associated molecules at the tip/end of the growing fibril. Thus, COMP appears to catalyze the fibril formation by promoting early association of collagen molecules leading to increased rate of fibrillogenesis and more distinct organization of the fibrils.  相似文献   

20.
《The Journal of cell biology》1996,135(5):1415-1426
A number of factors have been implicated in the regulation of tissue- specific collagen fibril diameter. Previous data suggest that assembly of heterotypic fibrils composed of two different fibrillar collagens represents a general mechanism regulating fibril diameter. Specifically, we hypothesize that type V collagen is required for the assembly of the small diameter fibrils observed in the cornea. To test this, we used a dominant-negative retroviral strategy to decrease the levels of type V collagen secreted by chicken corneal fibroblasts. The chicken alpha 1(V) collagen gene was cloned, and retroviral vectors that expressed a polycistronic mRNA encoding a truncated alpha 1(V) minigene and the reporter gene LacZ were constructed. The efficiency of viral infection was 30-40%, as determined by assaying beta- galactosidase activity. To assess the expression from the recombinant provirus, Northern analysis was performed and indicated that infected fibroblasts expressed high steady-state levels of retroviral mRNA. Infected cells synthesized the truncated alpha 1(V) protein, and this was detectable only intracellularly, in a distribution that colocalized with lysosomes. To assess endogenous alpha 1(V) protein levels, infected cell cultures were assayed, and these consistently demonstrated reductions relative to control virus-infected or uninfected cultures. Analyses of corneal fibril morphology demonstrated that the reduction in type V collagen resulted in the assembly of large- diameter fibrils with a broad size distribution, characteristics similar to fibrils produced in connective tissues with low type V concentrations. Immunoelectron microscopy demonstrated the amino- terminal domain of type V collagen was associated with the small- diameter fibrils, but not the large fibrils. These data indicate that type V collagen levels regulate corneal fibril diameter and that the reduction of type V collagen is sufficient to alter fibril assembly so that abnormally large-diameter fibrils are deposited into the matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号