首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
黄瓜分子标记辅助育种研究进展   总被引:5,自引:0,他引:5  
本文综述了不同分子标记技术在黄瓜遗传连锁图谱构建、重要性状相关基因的定位、种质资源遗传多样性分析和亲缘关系鉴定、分子标记辅助选择、种子纯度与活力鉴定及其在黄瓜遗传育种等方面的应用,讨论了目前黄瓜遗传育种中应用分子标记技术存在的问题和今后育种工作的重点,并对黄瓜分子标记辅助育种的前景作了展望。  相似文献   

2.
葫芦科瓜类作物分子标记辅助育种研究进展   总被引:4,自引:0,他引:4  
综述了几种常用分子标记在葫芦科瓜类作物遗传图谱构建、重要性状基因定位、遗传多样性及亲缘关系分析、分子标记辅助选择及在葫芦科遗传育种中的应用,对目前葫芦科遗传育种中应用分子标记技术存在的问题和解决方案进行了探讨,并对葫芦科分子标记辅助育种的前景做了展望。  相似文献   

3.
分子标记是一种新型的遗传标记,为林木遗传育种研究提供了新的手段,并在缩短育种周期、提高育种效益等方面展现出广阔的应用前景.本文介绍了RAPD分子标记原理、特点及其在油茶遗传育种研究中的应用现状与前景.  相似文献   

4.
遗传标记经历了形态标记、细胞学标记、生化标记和分子标记等4个阶段,其中分子标记的发展最为迅猛和有效。本文比较了几种主要分子标记方法的特点,为更好地利用分子标记提供了理论依据,并对分子标记在林木遗传多样性研究、遗传育种、DNA指纹图谱的构建、亲缘关系鉴定及分类研究等方面的应用做了介绍。  相似文献   

5.
SSR分子标记在烟草研究中的应用进展   总被引:1,自引:0,他引:1  
SSR分子标记技术作为最常用的分子标记技术之一,该标记技术重复性好,结果可靠,近年来在烟草遗传育种中展示了广阔的应用前景,是应用潜力较大的分子标记技术。介绍了SSR分子标记的原理及其分布特征,对其在烟草基因定位及分子标记辅助选择、种质资源研究、遗传图谱构建及种子纯度及真伪鉴定研究中的应用等方面进行了综述,并探讨了SSR分子标记技术在烟草遗传育种中的应用前景,以期为烟草SSR分子标记技术的研究提供参考。  相似文献   

6.
分子标记在黄瓜遗传育种研究中的应用   总被引:3,自引:0,他引:3  
综述了分子标记在黄瓜遗传育种中应用的几个方面:1、分子标记遗传图谱的建立及基因定位;2、亲缘关系和遗传多样性的研究;3、分子标记辅助选择;4、品种纯度鉴定  相似文献   

7.
分子标记由于能够反映DNA水平上的遗传变异而成为研究遗传多样性的重要方法。本文综述了利用分子标记分析高粱遗传多样性的研究进展,并阐述了遗传多样性分析在种质创新中的应用方向,提出了利用分子标记分析高粱遗传多样性研究中尚需进一步加强的研究内容。  相似文献   

8.
DNA分子标记在果树遗传育种研究中的应用   总被引:9,自引:0,他引:9  
DNA分子标记是随着分子生物学技术的发展出现的一类重要的遗传标记,近年来发展非常迅速,已在果树遗传育种研究的各个方面得到广泛的应用。介绍了几种DNA分子标记技术的原理,综述了DNA分子标记在果树种质资源研究、分子遗传图谱构建、基因定位、分子辅助选择等方面的应用,并对其在果树上的应用前景和存在问题进行了评述。  相似文献   

9.
分子标记技术及其在植物遗传育种中的应用   总被引:4,自引:0,他引:4  
本对遗传标记技术的发展历程作了简要的回顾。概述了目前常用的RFLP和RAPD等分子标记技术的基本原理和特点,及其在构建分子遗传图谱、品种间遗传关系分析、进行基因定位和测定遗传距离等遗传育种中的应用。  相似文献   

10.
微卫星DNA标记及其在鱼类遗传多样性研究中的应用   总被引:1,自引:0,他引:1  
微卫星DNA作为第二代分子遗传标记是高等真核生物基因组中种类多、分布广、具有高度的多态性和杂合度的分子标记,由于其具有多态性检出率高、信息含量大、共显性标记、实验操作简单、结果稳定可靠等优点,已经成为种群遗传学研究中被广泛应用的分子遗传标记。微卫星DNA标记技术在鱼类的群体遗传结构的分析、物种遗传多样性的鉴定以及遗传基因连锁图谱的构建等方面已初步得到应用。该文就微卫星技术的原理方法,在鱼类遗传多样性研究中的应用概况以及应用范围和注意事项等方面进行综述。为微卫星技术在鱼类遗传多样性研究中应用提供了理论参考。  相似文献   

11.
Recent development of DNA markers provides powerful tools for population genetic analyses. Amplified fragment length polymorphism (AFLP) markers result from a polymerase chain reaction (PCR)-based DNA fingerprinting technique that can detect multiple restriction fragments in a single polyacrylamide gel, and thus are potentially useful for population genetic studies. Because AFLP markers have to be analysed as dominant loci in order to estimate population genetic diversity and genetic structure parameters, one must assume that dominant (amplified) alleles are identical in state, recessive (unamplified) alleles are identical in state, AFLP fragments segregate according to Mendelian expectations and that the genotypes of an AFLP locus are in Hardy-Weinberg equilibrium (HWE). The HWE assumption is untestable for natural populations using dominant markers. Restriction fragment length polymorphism (RFLP) markers segregate as codominant alleles, and can therefore be used to test the HWE assumption that is critical for analysing AFLP data. This study examined whether the dominant AFLP markers could provide accurate estimates of genetic variability for the Aedes aegypti mosquito populations of Trinidad, West Indies, by comparing genetic structure parameters using AFLP and RFLP markers. For AFLP markers, we tested a total of five primer combinations and scored 137 putative loci. For RFLP, we examined a total of eight mapped markers that provide a broad coverage of mosquito genome. The estimated average heterozygosity with AFLP markers was similar among the populations (0.39), and the observed average heterozygosity with RFLP markers varied from 0.44 to 0.58. The average FST (standardized among-population genetic variance) estimates were 0.033 for AFLP and 0.063 for RFLP markers. The genotypes at several RFLP loci were not in HWE, suggesting that the assumption critical for analysing AFLP data was invalid for some loci of the mosquito populations in Trinidad. Therefore, the results suggest that, compared with dominant molecular markers, codominant DNA markers provide better estimates of population genetic variability, and offer more statistical power for detecting population genetic structure.  相似文献   

12.
Genetic markers are indispensable for molecular and statistical genetic research involving nonhuman primates. Genetic markers must be used to ascertain parentage and to confirm the accuracy of pedigrees based solely on housing or demographic records; otherwise, the results of pedigree, linkage, or quantitative genetic analyses may be unreliable. Until recently, most genetic markers used in nonhuman primates were plasma proteins or isozyme polymorphisms, which were required in large numbers, because levels of genetic variation revealed by these markers were rather low. We compared the newer, PCR-amplified short tandem repeat markers (STRs) with a panel of classical biochemical polymorphic markers, for paternity determination among captive-bred rhesus monkeys. The STR markers exhibited an average genetic diversity of 64% and an expected paternity exclusion probability of 0.443. Both of these were greater than the average 54.5% genetic diversity and 0.298 exclusion probability exhibited by the biochemical markers. The STRs were much more efficient than the biochemical markers for parentage determination, since they required only half the amount of genetic typing data to resolve an average paternity case. Thus, the results of applying these two classes of genetic markers in paternity tests were somewhat different than expected on the basis of theoretical exclusion probabilities. These differences were probably due to inbreeding and other genetic differences among breeding colonies. Because they are more informative and provide rapid and efficient genetic data, STRs are now the method of choice for parentage determination and pedigree corroboration among nonhuman primates.  相似文献   

13.
A high density genetic linkage map comprised of aA. 4 loci was constructed from a doubled haploid population derived from a inter-subspecific cross between an Oryza satire L. ssp. Indica vari.t.v ("Zhaiyeqing 8") and a japonica variety ("Jingxi 17"). The genetic map consisted of 276 RFLP markers, 34 RAPD markers, 89 microsatellite markers, 10 AFLP markers, 26 markers based on telomeric repetitive associated sequence (TAS) and 9 isozyme markers. This genetic map was highly comparable with other high density rice genetic maps and had its unique feature which meritted it suitable for sustained genetic analysis.  相似文献   

14.
For genetic linkage analysis of Japanese flounder, 160 doubled haploids (DH) were artificially produced using mitotic gynogenesis and were genotyped for 458 simple sequence repeat (SSR) markers, 101 of which show distortional segregation. The genetic linkage map was constructed by modifying recombination fractions between the distorted markers. Between the corrected and uncorrected genetic maps, there were considerable differences in genetic distance, but not in relative locations among markers. Using a liability model, a segregation distortion locus (SDL), with an additive genetic effect of 1.772, was mapped between markers BDHYP387 and Poli56TUF of chromosome 24 in the corrected genetic map. Additionally, six pairs of epistatic SDLs were identified on chromosomes 1, 5, 8, 9, 23, and 24. Changes in genetic distances between markers did not occur on chromosome regions with main effect SDLs. However, most chromosome regions where genetic distances changed covered the detected epistatic SDLs. This study concluded that epistatic SDLs decrease linkages between markers and lengthen genetic distances in Japanese flounder. This finding has been partially validated in other DH populations derived from three female Japanese flounders.  相似文献   

15.
Selection and use of molecular markers for evaluation of DNA polymorphism in plants are couple of the most important approaches in the field of molecular genetics. The assessment of genetic diversity using morphological markers is not sufficient due to little differentiating traits among the species, genera or their individuals. Morphological markers are not only highly influenced by environmental factors but skilled assessment is also prerequisite to find the variations in plant genetic resources. Therefore, molecular markers are considered as efficient tools for detailed DNA based characterization of fruit crops. Molecular markers provide new directions to the efforts of plant breeders particularly in genetic variability, gene tags, gene localization, taxonomy, genetic diversity, phylogenetic analysis and also play an important role to decrease the time required for development of new and excellent cultivars. The success of molecular markers technology in genetic improvement programs depends on the close relationship among the plant breeders, biotechnologists, skilled manpower and good financial support. The present review describes application and success of molecular markers technology used for genetic improvement in different fruit crops.  相似文献   

16.
目的探索建立利用微卫星遗传标记对中国恒河猴免疫遗传学同质性分群的方法。方法根据已报道的中国恒河猴和印度恒河猴微卫星标记和与MHC基因高度连锁的微卫星遗传标记,对52只恒河猴进行了微卫星检测和遗传同质性分群。结果依据判断标准,可以将检测的恒河猴分为印度恒河猴,中国恒河猴和无法判定来源的恒河猴3个地理类别,并根据MHC附近的微卫星遗传标记将其分为若干MHC基因相同的同质性群体。结论此方法的建立将有利于恒河猴参与的实验分组,也为恒河猴繁殖管理提供了参考。  相似文献   

17.
We have constructed a high-resolution consensus genetic map of the rat in a single large intercross, which integrates 747 framework markers and 687 positions of our whole-genome radiation hybrid (RH) map of the rat. We selected 136 new gene markers from the GenBank database and assigned them either genetically or physically to rat chromosomes to evaluate the accuracy of the integrated linkage-RH maps in the localization of new markers and to enrich existing comparative mapping data. These markers and 631 D-Got- markers, which are physically mapped but still uncharacterized for evidence of polymorphism, were tested for allele variations in a panel of 16 rat strains commonly used in genetic studies. The consensus linkage map constructed in the GK x BN cross now comprises 1620 markers of various origins, defining 840 resolved genetic positions with an average spacing of 2.2 cM between adjacent loci, and includes 407 gene markers. This whole-genome genetic map will contribute to the advancement of genetic studies in the rat by incorporating gene/EST maps, physical mapping information, and sequence data generated in rat and other mammalian species into genetic intervals harboring disease susceptibility loci identified in rat models of human genetic disorders.  相似文献   

18.
Assessment of genetic diversity in a crop germplasm is a vital part of plant breeding. DNA markers such as microsatellite or simple sequence repeat markers have been widely used to estimate the genetic diversity in rice. The present study was carried out to decipher the pattern of genetic diversity in terms of both phenotypic and genotypic variability, and to assess the efficiency of random vis-à-vis QTL linked/gene based simple sequence repeat markers in diversity estimation. A set of 88 rice accessions that included landraces, farmer’s varieties and popular Basmati lines were evaluated for agronomic traits and molecular diversity. The random set of SSR markers included 50 diversity panel markers developed under IRRI’s Generation Challenge Programme (GCP) and the trait-linked/gene based markers comprised of 50 SSR markers reportedly linked to yield and related components. For agronomic traits, significant variability was observed, ranging between the maximum for grains/panicle and the minimum for panicle length. The molecular diversity based grouping indicated that varieties from a common centre were genetically similar, with few exceptions. The trait-linked markers gave an average genetic dissimilarity of 0.45 as against that of 0.37 by random markers, along with an average polymorphic information constant value of 0.48 and 0.41 respectively. The correlation between the kinship matrix generated by trait-linked markers and the phenotype based distance matrix (0.29) was higher than that of random markers (0.19). This establishes the robustness of trait-linked markers over random markers in estimating genetic diversity of rice germplasm.  相似文献   

19.
Many rat strains have been employed in the genetic study of quantitative traits such as blood pressure. In such genetic studies, it is essential to prepare rat genetic maps fine enough to identify the genes regulating quantitative traits. However, it is not an easy task to isolate a sufficient number of genetic markers polymorphic between a particular pair of rat strains. In this study, we applied the randomly amplified microsatellite polymorphism (RAMP) method, a simple method to identify co-dominant markers (Wu et al. Nucleic Acids Res 22, 3257, 1994), to isolate markers polymorphic between the stroke-prone spontaneously hypertensive rat and the Wistar-Kyoto rat, a genetically hypertensive strain and its normotensive control strain, which share a common genetic background. We successfully identified 111 RAMP markers distributed throughout the rat genome after screening 3046 sets of primers. We also showed that we could isolate ordinary simple-sequence-length-polymorphism markers by cloning RAMP markers. The RAMP method is a simple and efficient way to identify co-dominant genetic markers on mammalian genomes. Received: 10 October 1997 / Accepted: 16 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号