首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dehydrophenylalanine (delta Phe) was incorporated into an antibiotic peptide gramicidin S (GS) in place of D-Phe4,4' to prepare an unsaturated analog. Conformational analysis with 1H-NMR indicated that the unsaturated analog has much the same backbone conformation as that of natural gramicidin S as shown by NOE experiments. Studies on temperature dependences and on the chemical shift differences showed that the hydrogen bonds between Val-NH and Leu-CO in the unsaturated analog are strengthened by the incorporation of delta Phe4,4'. This resulted in the reinforcement of the beta-sheet structure which is the most important structural element for GS bioactivity. [delta Phe4,4']gramicidin S exhibited indeed very strong antimicrobial activities against Gram-positive bacteria as well as the natural peptide.  相似文献   

2.
The previous study of the action of gramicidin S on bacteria (Katsu, T., Kobayashi, H. and Fujita, Y. (1986) Biochim. Biophys. Acta 860, 608-619) prompted us to investigate further the structure-activity relationship of the gramicidin S analogues on membrane permeability. Two types of the gramicidin S analogues were used in the present study: (1) cyclo(-X-D-Leu-D-Lys-D-Leu-L-Pro-)2, where X = Gly, D-Leu and D-cyclohexylalanine (D-cHxAla); (2) N,N'-diacetyl derivative of gramicidin S (diacetyl-gramicidin S) which lacks a cationic moiety of gramicidin S. All the analogues have a beta-sheet conformation as gramicidin S. The following cellular systems were used: Staphylococcus aureus as Gram-positive bacteria, Escherichia coli as Gram-negative bacteria, human erythrocytes, rat liver mitochondria and artificial liposomal membranes. It was found that gramicidin S and one of the type 1 analogues having X = D-cHxAla induced the efflux of K+ through the cytoplasmic membrane of all types of the cells. In addition, these two peptides had the ability to lower the phase transition temperature of dipalmitoylphosphatidylcholine. Accordingly, it was concluded that, if peptides can expand greatly the membrane structure of neutral lipids which constitute main parts of the biological membrane, they can stimulate the permeability of cells without any selectivity. The action of the type 2 peptide, diacetyl-gramicidin S, was strongly cell dependent. Although this peptide stimulated the efflux of K+ from mitochondria, it did not do so efficiently, if at all, from S. aureus, E. coli and erythrocytes. In experiments using liposomes, diacetyl-gramicidin S increased markedly the permeability of liposomes composed of egg phosphatidylcholine. The presence of egg phosphatidylethanolamine or cholesterol reduced its activity. These results on liposomes explained well the low sensitivity of diacetyl-gramicidin S against E. coli and erythrocytes in terms of lipid constituents of the membranes. The mechanism of action of diacetyl-gramicidin S was discussed from the formation of a boundary lipid induced by this peptide.  相似文献   

3.
Polarized infrared spectroscopy has been used to investigate the orientation of gramicidin A incorporated in dimyristoylphosphatidylcholine liposomes. Dichroism measurements of the major lipid (C = O ester, PO2-, CH2) and peptide (amide A, I, II) bands were performed on liposomes (with or without gramicidin) oriented by air-drying. The mean orientation of the lipid groups and of the pi LD helix chain in the gramicidin has been determined. It can be inferred from infrared frequencies of gramicidin that the dominant conformation of the peptide in liposomes cannot be identified to the antiparallel double-helical dimer found in organic solution. No shift in lipid frequencies was observed upon incorporation of gramicidin in the liposomes. However, a slight reorganization of the lipid hydrocarbon chains which become oriented more closely to the normal to the bilayer is evidenced by a change in the dichroism of the CH2 vibrations. The infrared dichroism results of gramicidin imply a perpendicular orientation of the gramicidin transmembrane channel with the pi LD helix axis at less than 15 degrees with respect to the normal to the bilayer.  相似文献   

4.
The effects of phase transition from normal to interdigitated lipid bilayer on the function and structure of membrane proteins were studied using linear gramicidin (gramicidin A) as a model. Interdigitated bilayer structure of dipalmitoylphosphatidylglycerol (DPPG) liposomes that was induced by atropine could not be changed notably by intercalating of gramicidin. The K+ transportation of gramicidin in both normal and interdigitated bilayer was assayed by measuring the membrane potential. Results showed that gramicidin in interdigitated bilayer exhibited lower transport capability. Intrinsic fluorescence spectrum of gramicidin in interdigitated bilayer blue-shifted 2.8 nm from the spectrum in normal bilayer, which means that interdigitation provides a more hydrophobic environment for gramicidin. Circular dichroism measurement results indicated that the conformation of gramicidin in interdigitated bilayer is not the typical beta6.3 helix as in the normal bilayer. The results suggested that the interdigitated lipid bilayer might largely affect the structure and function of membrane proteins.  相似文献   

5.
The matching of hydrophobic lengths of integral membrane proteins and the surrounding lipid bilayer is an important factor that influences both structure and function of integral membrane proteins. The ion channel gramicidin is known to be uniquely sensitive to membrane properties such as bilayer thickness and membrane mechanical properties. The functionally important carboxy terminal tryptophan residues of gramicidin display conformation-dependent fluorescence which can be used to monitor gramicidin conformations in membranes [S.S. Rawat, D.A. Kelkar, A. Chattopadhyay, Monitoring gramicidin conformations in membranes: a fluorescence approach, Biophys. J. 87 (2004) 831-843]. We have examined the effect of hydrophobic mismatch on the conformation and organization of gramicidin in saturated phosphatidylcholine bilayers of varying thickness utilizing the intrinsic conformation-dependent tryptophan fluorescence. Our results utilizing steady state and time-resolved fluorescence spectroscopic approaches, in combination with circular dichroism spectroscopy, show that gramicidin remains predominantly in the channel conformation and gramicidin tryptophans are at the membrane interfacial region over a range of mismatch conditions. Interestingly, gramicidin conformation shifts toward non-channel conformations in extremely thick gel phase membranes although it is not excluded from the membrane. In addition, experiments utilizing self quenching of tryptophan fluorescence indicate peptide aggregation in thicker gel phase membranes.  相似文献   

6.
The study on the possibility of eliminating gramicidin S from the bacterial cells which had adsorbed it showed that a part of the labeled antibiotic bound by the bacteria may be washed out with buffer or salines. When the cells which had adsorbed gramicidin S were treated with lecithin emulsion, a significant part of the bound antibiotic was transferred to the lecithin liposomes. This turned the gramicidin S effect to the cells: significant but not complete reduction of the membrane barrier properties and dehydrogenase reactivation. Elimination of gramicidin S also reduced the colony forming capacity in a part of the cells.  相似文献   

7.
The matching of hydrophobic lengths of integral membrane proteins and the surrounding lipid bilayer is an important factor that influences both structure and function of integral membrane proteins. The ion channel gramicidin is known to be uniquely sensitive to membrane properties such as bilayer thickness and membrane mechanical properties. The functionally important carboxy terminal tryptophan residues of gramicidin display conformation-dependent fluorescence which can be used to monitor gramicidin conformations in membranes [S.S. Rawat, D.A. Kelkar, A. Chattopadhyay, Monitoring gramicidin conformations in membranes: a fluorescence approach, Biophys. J. 87 (2004) 831-843]. We have examined the effect of hydrophobic mismatch on the conformation and organization of gramicidin in saturated phosphatidylcholine bilayers of varying thickness utilizing the intrinsic conformation-dependent tryptophan fluorescence. Our results utilizing steady state and time-resolved fluorescence spectroscopic approaches, in combination with circular dichroism spectroscopy, show that gramicidin remains predominantly in the channel conformation and gramicidin tryptophans are at the membrane interfacial region over a range of mismatch conditions. Interestingly, gramicidin conformation shifts toward non-channel conformations in extremely thick gel phase membranes although it is not excluded from the membrane. In addition, experiments utilizing self quenching of tryptophan fluorescence indicate peptide aggregation in thicker gel phase membranes.  相似文献   

8.
The effects of two different gramicidin conformations on lipid phase behaviour and dynamics are compared. Samples of chain-perdeuterated dimyristoylphosphatidylcholine containing gramicidin were first prepared with gramicidin in a state having a circular dichroism spectrum generally identified as corresponding to the non-channel conformation. The effects, on bilayer lipid properties, of gramicidin in this conformation were then determined using deuterium nuclear magnetic resonance measurements of acyl chain orientational order and transverse relaxation times as a function of temperature. These samples were then incubated at 65 degrees C to convert the gramicidin to a state with a circular dichroism spectrum of the type generally identified with the channel conformation. The nuclear magnetic resonance measurements were then repeated. In the gel phase, it was found that transverse relaxation time and chain orientational order of the lipid were insensitive to gramicidin conformation. In the liquid crystalline phase, gramicidin in the channel conformation was found to have a slightly larger effect on transverse relaxation and orientational order than gramicidin in the non-channel conformation. The perturbation of the phase behavior by gramicidin was found to be relatively insensitive to gramicidin conformation.  相似文献   

9.
The work was concerned with studying the effect of gramicidin S derivatives with modified free amino groups of ornithine residues on bacterial cells and protoplasts. The substitution of the amino groups with neutral or carboxyl-containing groups eliminated or sharply decreased the antibacterial activity of gramicidin S, its binding to the cells, and the ability to change the permeability of the cytoplasmic membranes of the intact cells. However, the neutral derivatives and the derivative with acidic properties showed a considerable lytic activity when they were incubated with the protoplasts of Micrococcus lysodeikticus, Bacillus megaterium and Bacillus subtilis. Hence, these compounds preserved a certain membranotropic level. Those gramicidin S derivatives with modified ornithine amino groups which possessed basic properties were similar to gramicidin S in the antibiotic activity, the modified permeability of the membranes, the ability to bind with the cells, and the lytic action on the protoplasts.  相似文献   

10.
K P Datema  K P Pauls  M Bloom 《Biochemistry》1986,25(13):3796-3803
Solid gramicidin A and S and their interaction with DPPC bilayers were examined by 2H NMR as well as 31P NMR and differential scanning calorimetry (DSC). The deuterium spectra arose from deuterons associated with the peptide through chemical exchange in 2H2O. The spectra from both peptides were characterized by a quadrupolar splitting parameter, omega Q/2 pi approximately 150 kHz, and an asymmetry parameter, eta approximately 0.17. An additional 33 kHz, eta = 0 component arising from deuterons on mobile ornithine side chains was present in gramicidin S. In the gel phase of dipalmitoylphosphatidylcholine liposomes the gramicidins gave spectra that had components identical with those obtained from the solids. In the liquid-crystalline phase gramicidin A containing samples gave multicomponent spectra with a maximum quadrupolar splitting value of 133 kHz, eta = 0. A minimum in the T2e was observed, coinciding with the onset of the broadened phase transition measured by DSC and 31P NMR, due to the onset of axial rotation of the peptide in the bilayer. The different powder patterns in the liquid-crystalline spectra from gramicidin A probably arise from different amide sites along the transmembrane channel. The broad component of the 2H NMR spectra from gramicidin S in liposome preparations was not affected by the lipid-phase transition. The T2e was also constant over this temperature range. The results are consistent with a location of gramicidin S at the membrane surface.  相似文献   

11.
Raman scattering and infrared spectroscopic techniques were used to study the vibrational spectrum and conformation of the membrane channel protein gramicidin A in the solid state, in organic solutions and, using Raman scattering only, in a phospholipid environment. The investigation also includes measurements on head- and tail-group-modifled gramicidin A and a potassium thiocyanate-gramicidin A complex. Tentative identification of the molecular vibrations is proposed on the basis of the data on model compounds. The existence of four distinct conformations of the gramicidin A chain is established: conformation I present in the solid state, and CH3OH and CD3OD solutions; conformation II present in films cast from CHCl3 solution; conformation III present in (CH3)2SO and (CD3)2SO solutions at concentrations below 0.5 m gramicidin A; and conformation IV present in the potassium thiocyanate-gramicidin A complex. The data obtainable on a gramicidin A-phospholipid suspension indicate a gramicidin A conformation in this environment corresponding either to the conformation I or II. The details of the spectra in the amide I region are shown to be consistent with a β-parallel hydrogen-bonded πLD helix for conformational I, in terms of the polypeptide vibrational calculations of Nevskaya and co-workers. Conformation II is found to be consistent with an antiparallel double-stranded πLD helix, while conformations III and IV probably have π-helical structures with larger channel diameters. The data on head- and tail-modified gramicidin A molecules indicate that their conformations are only slightly different from that of gramicidin A in conformation I.  相似文献   

12.
Mode of action of gramicidin S on Escherichia coli membrane   总被引:3,自引:0,他引:3  
The action of a cationic antibiotic gramicidin S on the outer and cytoplasmic membranes of Escherichia coli was studied. It was found that gramicidin S disrupted the permeability barrier of the outer membrane, permitting the permeation of an antibiotic ionophore, this being similar to the action of the dimer in compound 48/80 (Katsu, T., Shibata, M. and Fujita, Y. (1985) Biochim. Biophys. Acta 818, 61-66). However, differently from the dimer, gramicidin S further stimulated the efflux of K+ through the cytoplasmic membrane of E. coli. The time course of K+ permeability change accorded well with that of change in the viability of E. coli cells. These changes occurred at temperatures above the phase transition of the cytoplasmic membrane. This temperature range differed greatly from the case of polymyxin B, a polycationic antibiotic acting at temperatures above the phase transition of the outer membrane. We discuss the mode of gramicidin S action on the cytoplasmic membrane of E. coli, in comparison with the results on red blood cells and liposomes.  相似文献   

13.
The linear pentadecapeptide gramicidin A forms an ion channel in the lipid bilayer to selectively transport monovalent cations. Nevertheless, we have surprisingly found that gramicidin A directly inhibits mammalian Na(+)/K(+)-ATPase. Gramicidin A inhibited ATP hydrolysis by Na(+)/K(+)-ATPase from porcine cerebral cortex at the IC(50) value of 8.1 microM, while gramicidin S was approximately fivefold less active. The synthetic gramicidin A analog lacking N-terminal formylation and C-terminal ethanolamine exhibited a weaker inhibitory effect on the ATP-hydrolyzing activity of Na(+)/K(+)-ATPase than gramicidin A, indicating that these end modifications are necessary for gramicidin A to inhibit Na(+)/K(+)-ATPase activity. Moreover, Lineweaver-Burk analysis showed that gramicidin A exhibits a mixed type of inhibition. In addition to the most well-studied ionophore activity, our present study has disclosed a novel biological function of gramicidin A as a direct inhibitor of mammalian Na(+)/K(+)-ATPase activity.  相似文献   

14.
Proteinchemical and kinetic features of gramicidin S synthetase   总被引:1,自引:0,他引:1  
The amino-acid compositions of both enzymes of gramicidin S synthetase were determined. These proteins contain a high number of acidic amino-acid residues. Phenylalanine racemase, the light enzyme, was sequenced from the N-terminus until position 10. The kinetics of the thioester formation reactions were studied. The half-life times of these processes under substrate saturation conditions were found in the range between seconds and a few minutes. The valine activation at the heavy enzyme was detected as one of the rate-limiting steps of the biosynthesis of gramicidin S.  相似文献   

15.
Normal mode calculations have been carried out on three low-energy structures of gramicidin S obtained from conformational energy calculations. When the results on the amide modes are compared with observed bands in the infrared and Raman spectra of crystalline gramicidin S and its N-deuterated derivative, one of the structures is clearly disfavored. Of the other two, one is slightly favored, and it corresponds to the lowest-energy structure obtained from the energy calculations. Spectra from solutions in DMSO and CH3 OH suggest that the molecular conformation is essentially retained in these solvents.  相似文献   

16.
Summary An osmotic method was used to study the salt permeability induced by gramicidin A in liposomes. Sequences of cation permeation were obtained for iodide, salycilate, acetate und formate salts in liposomes below and above their transition temperature. Salycilate and formate salts, unlike acetate and iodide salts, exhibit the same sequences for cation selectivity in liposomes below and above their transition temperature. These results can be explained by assuming three mechanisms for salt permeation across gramicidin-containing liposomes: (i) the anion moves by the lipid part of the membrane whereas the cation moves by the gramicidin channel, (ii) movement of the undissociated acid species occurs through the lipid part of the membrane followed by cation-proton exchange via the gramicidin channel and (iii) the cation and anion may move simultaneously via the gramicidin channel.When the movement of the anion or undissociated acid across the lipid part of the membrane is not rate limiting the permeation process, the cation selectivity obtained agrees with the cation selectivity of the gramicidin A channel, as determined by others using independent measurements.  相似文献   

17.
Ion-channel activity of a series of gramicidin A analogues carrying charged amino-acid sequences on the C-terminus of the peptide was studied on planar bilayer lipid membranes and liposomes. It was found that the analogue with the positively charged sequence GSGRRRRSQS forms classical cationic pores at low concentrations and large unselective pores at high concentrations. The peptide was predominantly in the right-handed beta(6.3)-helical conformation in liposomes as shown by circular dichroism spectroscopy. The single-channel conductance of the large pore was estimated to be 320pS in 100mM choline chloride as judged from the fluctuation analysis of the multi-channel current. The analogue with the negatively charged sequence GSGEEEESQS exhibited solely classical cationic channel activity. The ability of a peptide to form different type of channels can be used in the search for broad-spectrum antibiotics.  相似文献   

18.
J A Killian  K U Prasad  D Hains  D W Urry 《Biochemistry》1988,27(13):4848-4855
The conformation of gramicidin in diacylphosphatidylcholine model membranes was investigated as a function of the solvent in which peptide and lipid are initially codissolved. By use of circular dichroism it is demonstrated that, upon removal of the solvent and hydration of the mixed gramicidin/lipid film, it is the conformational behavior of the peptide in the organic solvent that determines its final conformation in dimyristoylphosphatidylcholine model membranes. As a consequence, parameters that influence the conformation of the peptide in the solvent also play an essential role, such as the gramicidin concentration and the rate of interconversion between different conformations. Of the various solvents investigated, only with trifluoroethanol is it possible directly to incorporate gramicidin entirely in the beta 6.3-helical (channel) configuration. It is also shown that the conformation of gramicidin in the membrane varies with the peptide/lipid ratio, most likely as a result of intermolecular gramicidin-gramicidin interactions at higher peptide/lipid ratios, and that heat incubation leads to a conformational change in the direction of the beta 6.3-helical conformation. Using lipids with an acyl chain length varying from 12 carbon atoms in dilauroylphosphatidylcholine to 22 carbon atoms in dierucoylphosphatidylcholine, it was possible to investigate the acyl chain length dependence of the gramicidin conformation in model membranes prepared from these lipids with the use of different solvent systems. It is demonstrated for each solvent system that the distribution between different conformations is relatively independent of the acyl chain length but that the rate at which the conformation converts toward the beta 6.3-helical configuration upon heating of the samples is affected by the length of the acyl chain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
An osmotic method was used to study the salt permeability induced by gramicidin A in liposomes. Sequences of cation permeation were obtained for iodide, salycilate, acetate and formate salts in liposomes below and above their transition temperature. Salycilate and formate salts, unlike acetate and iodide salts, exhibit the same sequences for cation selectivity in liposomes below and above their transition temperature. These results can be explained by assuming three mechanisms for salt permeation across gramicidin-containing liposomes: (i) the anion moves by the lipid part of the membrane whereas the cation moves by the gramicidin channel, (ii) movement of the undissociated acid species occurs through the lipid part of the membrane followed by cation-proton exchange via the gramicidin channel and (iii) the cation and anion may move simultaneously via the gramicidin channel. When the movement of the anion or undissociated acid across the lipid part of the membrane is not rate limiting the permeation process, the cation selectivity obtained agrees with the cation selectivity of the gramicidin A channel, as determined by others using independent measurements.  相似文献   

20.
We have explored the effect of gramicidin A (gA) on bicelle (Bic) orientation in the absence and presence of Eu(3+) by (31)P and (2)H NMR at different DMPC/gA ratios. FT-IR spectroscopy was used to assess the lipid chain ordering and verify the transmembrane peptide conformation. Our results show a time-dependent flipping of the bilayer normal alignment at high temperatures and high proportion of gA. The results are explained by both the diamagnetic susceptibility anisotropy of the beta(6.3) helical peptides and viscosity of the lipid mixture. The concentration effect of gramicidin on Bic/Eu(3+) is compared to that on Eu(3+)-doped DMPC liposomes. The Bic/Eu(3+) system is no longer oriented in the presence of gA and adopts a vesicular morphology while the peptide incorporation induces the formation of ellipsoidal DMPC/Eu(3+) assemblies aligned with their normal parallel to the magnetic field. The difference is explained in terms of lipid chain disorder and size of the bilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号