首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
In several diazotrophic species of Proteobacteria, P(II) signal transduction proteins have been implicated in the regulation of nitrogen fixation in response to NH(4)(+) by several mechanisms. In Azotobacter vinelandii, expression of nifA, encoding the nif-specific activator, is constitutive, and thus, regulation of NifA activity by the flavoprotein NifL appears to be the primary level of nitrogen control. In vitro and genetic evidence suggests that the nitrogen response involves the P(II)-like GlnK protein and GlnD (uridylyltransferase/uridylyl-removing enzyme), which reversibly uridylylates GlnK in response to nitrogen limitation. Here, the roles of GlnK and GlnK-UMP in A. vinelandii were studied to determine whether the Nif (-) phenotype of glnD strains was due to an inability to modify GlnK, an effort previously hampered because glnK is an essential gene in this organism. A glnKY51F mutation, encoding an unuridylylatable form of the protein, was stable only in a strain in which glutamine synthetase activity is not inhibited by NH(4)(+), suggesting that GlnK-UMP is required to signal adenylyltransferase/adenylyl-removing enzyme-mediated deadenylylation. glnKY51F strains were significantly impaired for diazotrophic growth and expression of a nifH-lacZ fusion. NifL interacted with GlnK and GlnKY51F in a yeast two-hybrid system. Together, these data are consistent with those obtained from in vitro experiments (Little et al., EMBO J., 19:6041-6050, 2000) and support a model for regulation of NifA activity in which unmodified GlnK stimulates NifL inhibition and uridylylation of GlnK in response to nitrogen limitation prevents this function. This model is distinct from one proposed for the related bacterium Klebsiella pneumoniae, in which unmodified GlnK relieves NifL inhibition instead of stimulating it.  相似文献   

12.
The effect of NH4+ ions on (Na+,K+)-ATPase hydrolytic activity was examined in a gill microsomal fraction from M. olfersii. In the absence of NH4+ ions, K+ ions stimulated ATP hydrolysis, exhibiting cooperative kinetics (nH=0.8), to a maximal specific activity of V=556.1+/-22.2 nmol.min(-1).mg(-1) with K(0.5)=2.4+/-0.1 mmol.L(-1). No further stimulation by K+ ions was observed in the presence of 50 mmol.L(-1) NH4+ ions. ATP hydrolysis was also stimulated by NH4+ ions obeying Michaelian kinetics to a maximal specific activity of V=744.8+/-22.3 nmol.min(-1).mg(-1) and KM=8.4+/-0.2 mmol.L(-1). In the presence of 10 mmol.L(-1) K+ ions, ATP hydrolysis was synergistically stimulated by NH4+ ions to V=689.8+/-13.8 nmol.min(-1).mg(-1) and K(0.5)=6.6+/-0.1 mmol.L(-1), suggesting that NH4+ ions bind to different sites than K+ ions. PNPP hydrolysis was also stimulated cooperatively by K+ or NH4+ ions to maximal values of V= 235.5+/-11.8 nmol.min(-1).mg(-1) and V=234.8+/-7.0 nmol.min(-1).mg(-1), respectively. In contrast to ATP hydrolysis, K(+)-phosphatase activity was not synergistically stimulated by NH4+ and K+ ions. These data suggest that at high NH4+ ion concentrations, the (Na+, K+)-ATPase exposes a new site; the subsequent binding of NH4+ ions stimulates ATP hydrolysis to rates higher than those for K+ ions alone. This is the first demonstration that (Na+, K+)-ATPase activity in a freshwater shrimp gill is modulated by ammonium ions, independently of K+ ions, an effect that may constitute a fine-tuning mechanism of physiological relevance to osmoregulatory and excretory processes in palaemonid shrimps.  相似文献   

13.
14.
15.
16.
17.
18.
Chloroplast ATPase complex is activated by illumination in the presence or absence of dithiothreitol. ATPase complex which has been activated without dithiothreitol catalyzes ATP hydrolysis which is insensitive to stimulation by NH4Cl and is highly sensitive to medium pH. Addition of dithiothreitol during illumination results in an increase in the stimulating effect of NH4Cl on ATP hydrolysis and a decrease in pH sensitivity of ATP hydrolysis. With increasing time in the dark, the ability of NH4Cl to stimulate ATP hydrolysis decreases and the effect of pH on the ATP hydrolysis increases. The onset of resistance to NH4Cl stimulation and the increase in sensitivity to pH are accelerated by ADP and the acceleration is inhibited by Pi. ATP hydrolysis restores NH4Cl sensitivity and renders the activity more resistant to pH. These results suggest that active chloroplast ATPase complex converts its state reversibly from the NH4Cl-insensitive and highly pH-sensitive one to the NH4Cl-sensitive and relatively pH-insensitive one. The conversion from the former to the latter requires both sulfhydryl compound and energy.  相似文献   

19.
Short-term ammonium inhibition of nitrogen fixation in Azotobacter   总被引:4,自引:0,他引:4  
Addition of NH4Cl at low concentrations to Azotobacter chroococcum cells caused an immediate cessation of nitrogenase activity, which was recovered once the added NH+4 was exhausted from the medium. In the presence of inhibitors of ammonium assimilation, such as L-methionine-DL-sulfoximine, L-methionine sulfone or 6-diazo-5-oxo-L-norleucine, externally added NH+4 had no effect on nitrogenase activity and the newly-fixed nitrogen was excreted into the medium as NH+4. It is concluded that, in A. chroococcum, NH+4 must be assimilated to exert its short-term inhibitory effect on nitrogen fixation.  相似文献   

20.
To improve ATP production from adenine, we optimized cultivation and reaction conditions for the ATP producing strain, Corynebacterium ammoniagenes KY13510. In the conventional method, 28% NH4OH has been used both to adjust pH during cultivation and reaction, and to provide nitrogen for cell growth. In the ATP-producing reaction, high concentrations of inorganic phosphate and magnesium ion are needed, which form magnesium ammonium phosphate (MgNH4PO4) precipitate. To keep inorganic phosphate and magnesium ions soluble in the reaction mixture, it was indispensable to add phytic acid as a chelating agent of divalent metal ions. Under such conditions, 37 mg/ml (61.2 mM) ATP was accumulated in 13 h (Appl. Microbiol. Biotechnol. 21, 143 1985). If ammonium ion was depleted from the reaction mixture to avoid MgNH4 PO4 formation, we expected that there was no need to add phytic acid and ATP accumulation might be improved. Therefore, we obtained the cultured broth of C. ammoniagenes KY13510 strain with low ammonium ion content (less than 1 mg/ml as NH3) by the method that a part of alkali solution (28% NH4OH) for pH control was replaced with 10 N KOH. Using this culture broth, ATP producing reaction was done in 2-liter jar fermentor, controlling the pH of the reaction mixture with 10 N KOH. Under these conditions, the rate of ATP accumulation improved greatly, and 70.6 mg/ml (117 mM) ATP was accumulated in 28 h. The molar conversion ratio from adenine to ATP was about 82%. Phytic acid was slightly inhibitory to ATP formation under these ammonium-limited conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号