共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction of thiocyanate with horseradish peroxidase (HRP) was investigated by relaxation rate measurements (at 50.68 MHz) of the 15N resonance of thiocyanate nitrogen and by following the hyperfine shifted ring methyl proton resonances (at 500 MHz) of the heme group of SCN-.HRP solutions. At pH 4.0, the apparent dissociation constant (KD) for thiocyanate binding to HRP was deduced to be 158 mM from the relaxation rate measurements. Chemical shift changes of 1- and 8-ring methyl proton resonances in the presence of various amounts of thiocyanate at pH 4.0 yielded KD values of 166 and 136 mM, respectively. From the pH dependence of KD and the 15N resonance line width, it was observed that thiocyanate binds to HRP only under acidic conditions (pH less than 6). The binding was found to be facilitated by protonation of an acid group on the enzyme with pKa 4.0. The pH dependence of the 15N line width as well as the apparent dissociation constant were quantitatively analyzed on the basis of a reaction scheme in which thiocyanate in deprotonated ionic form binds to the enzyme in protonated acidic form. The KD for thiocyanate binding to HRP was also evaluated in the presence of an excess of exogenous substrates such as resorcinol, cyanide, and iodide ions. It was found that the presence of cyanide (which binds to heme iron at the sixth coordination position) and resorcinol did not have any effect on the binding of thiocyanate, indicating that the binding site of the thiocyanate ion is located away from the ferric center as well as from the aromatic donor binding site. The KD in the presence of iodide, however, showed that iodide competes with thiocyanate for binding at the same site. The distance of the bound thiocyanate ion from the ferric center was deduced from the 15N relaxation time measurements and was found to be a 6.8 A. From the distance as well as the change in the chemical shifts and line width of 1- and 8-methyl proton resonances, it is suggested that the binding site of thiocyanate may be located near heme, placed symmetrically with respect to 1- and 8-methyl groups of the heme of HRP. Similarity in the modes of binding of iodide and thiocyanate suggests that the oxidation of thiocyanate ion by H2O2 may also proceed via the two-electron transfer pathway under acidic conditions, as is the case for iodide. 相似文献
2.
The binding of thiocyanate to lactoperoxidase (LPO) has been investigated by 1H and 15N NMR spectroscopy. 1H NMR of LPO shows that the major broad heme methyl proton resonance at about 61 ppm is shifted upfield by addition of the thiocyanate, indicating binding of the thiocyanate to the enzyme. The pH dependence of line width of 15N resonance of SC15N- in the presence of the enzyme has revealed that the binding of the thiocyanate to the enzyme is facilitated by protonation of an ionizable group (with pKa of 6.4), which is presumably distal histidine. Dissociation constants (KD) of SC15N-/LPO, SC15N-/LPO/I-, and SC15N-/LPO/CN- equilibria have been determined by 15N T1 measurements and found to be 90 +/- 5, 173 +/- 20, and 83 +/- 6 mM, respectively. On the basis of these values of KD, it is suggested that the iodide ion inhibits the binding of the thiocyanate but cyanide ion does not. The thiocyanate is shown to bind at the same site of LPO as iodide does, but the binding is considerably weaker and is away from the ferric ion. The distance of 15N of the bound thiocyanate ion from the iron is determined to be 7.2 +/- 0.2 A from the 15N T1 measurements. 相似文献
3.
The interaction of aromatic donor molecules with manganese(III) protoporphyrin-apohorseradish peroxidase complex [Mn(III)HRP] was investigated by optical difference spectroscopy and relaxation rate measurements of 1H resonances of aromatic donor molecules (at 500 MHz). pH dependence of substrate proton resonance line-widths indicated that the binding was facilitated by protonation of an amino acid residue (with a pKa of 6.1), which is presumably distal histidine. Dissociation constants were evaluated from both optical difference spectroscopy and 1H-NMR relaxation measurements (pH 6.1). The dissociation constants of aromatic donor molecules were not affected by the presence of excess of I-, CN- and SCN-. From competitive binding studies it was shown that all these aromatic donor molecules bind to Mn(III)HRP at the same site, which is different from the binding site of I-, CN- and SCN-. Comparison of the dissociation constants between the different substrates suggests that hydrogen bonding of the donors with distal histidyl amino acid and hydrophobic interaction between the donors and active site contribute significantly towards the associating forces. Free energy, entropy and enthalpy changes associated with the Mn(III)HRP-substrate equilibrium have been evaluated. These thermodynamic parameters were found to be all negative. Distances of the substrate protons from the paramagnetic manganese ion of Mn(III)HRP were found to be in the range of 7.7 to 9.4 A. The Kd values, the thermodynamic parameters and the distances of the bound aromatic donor protons from metal center in the case of Mn(III)HRP were found to be very similar as in the case of native Fe(III)HRP. 相似文献
4.
Lactoperoxidase-catalyzed oxidation of thiocyanate by hydrogen peroxide: 15N nuclear magnetic resonance and optical spectral studies 总被引:1,自引:0,他引:1
To establish the agent(s) responsible for the activity of the lactoperoxidase (LPO)/SCN-/H2O2 system, the oxidation of thiocyanate with hydrogen peroxide, catalyzed by lactoperoxidase, has been studied by 15N NMR and optical spectroscopy at different concentrations of thiocyanate and hydrogen peroxide and at different pHs. The formation of hypothiocyanite ion (OSCN-) as one of the oxidation products correlated well with the activity of the LPO/SCN-/H2O2 system and was maximum when the concentrations of the H2O2 and SCN- were nearly the same and the pH was less than 6.0. At [H2O2]/[SCN-] = 1, OSCN- decomposed very slowly back to thiocyanate. When the ratio [H2O2]/[SCN-] was above 2, formation of CN- was observed, which was confirmed by 15N NMR and also by changes in the optical spectrum of LPO. The oxidation of thiocyanate by H2O2 in the presence of LPO does not take place at pH greater than 8.0. Since thiocyanate does not bind to LPO above this pH, the binding of thiocyanate to LPO is considered to be prerequisite for the oxidation of thiocyanate. Maximum inhibition of oxygen uptake by Streptococcus cremoris 972 bacteria was observed when hydrogen peroxide and thiocyanate were present in equimolar amounts and the pH was below 6.0. 相似文献
5.
Enzymatic reaction intermediates of horseradish peroxidase, compounds I and II, were studied by high-resolution nuclear magnetic resonance spectroscopy at 220 MHz. The heme peripheral proton peaks were successfully obtained in the downfield region of 50 to 80 ppm from 4,4-dimethyl-4-silapentane-5-sulfonate for compound I and of 10 to 20 ppm for compound II at pH 9.2. This indicates that no isoporphyrin appears in the catalytic cycle of the enzyme. Temperature dependences of the spectra also were determined for these compounds between 7 and 32 degrees C. With increasing temperature, all the peaks in the downfield region for compound I shifted upfield, obeying the Curie law. These results suggest that the Fe atoms in compounds I and II are in ferryl high- and low-spin states, respectively. The spectrum was also observed in solutions of horse metmyoglobin to which hydrogen peroxide (H2O2) was added. The electron formulations of the hemes in their spectra. Evidence was found against a pi-cation radical on the heme ring as a source of the oxidizing equivalent in compound I. 相似文献
6.
Ninety-nine percent 15N-enriched flavins were synthesized and their proton decoupled 15N resonances were observed. The enriched compounds were [1,3-15N]riboflavin, [1,3,5-15N]riboflavin, [1,3-15N]riboflavin 5'-phosphate, [1,3,5-15N]riboflavin 5'-phosphate, and [1,3,5-15N] flavin adenine dinucleotide, [1,3,5-15N] lumiflavin, and [1,3,5-15N] lumichrome. By comparison of their spectra and from th- nuclear Overhauser effect data each 15N resonance peak could be assigned to each 15N nucleus. The order of the chemical shifts well corresponds to that of the calculated pi-electron densities. The N-3 nucleus gives the most intense inverted peak and the N-5 nucleus a small noninverted peak. By changing pH from neutral to alkaline, the chemical shift and the intensity of signal were mostly affected in the N-3 resonance of riboflavin 5'-phosphate. The N-5 signal of flavin adenine dinucleotide showed a fairly large downfield shift with the increase of temperature. These observations can be well interpreted by the chemical structure and the proposed conformation of riboflavin 5'-phosphate and flavin adenine dinucleotide. 相似文献
7.
8.
The proton nuclear magnetic resonance spectrum of sulfmyoglobin cyanide was studied at 400 MHz. The position of a methyl-group resonance at low field is consistent with a chlorin-like structure for the prosthetic group. The proton NMR spectrum of the cyanide derivative of the purified prosthetic group which decomposes upon extraction from the protein was found to be the same as that of the cyanide derivative of the prosthetic group extracted from myoglobin and a sample prepared from hemin-Cl. 相似文献
9.
Ter-butyl hydroperoxide (TBH) induced microsomal lipid peroxidation has been measured by oxygen consumption and malonaldehyde (MDA) formation. It has been found that the singlet oxygen (1O2) trap 2,5 diphenylfuran depressed both oxygen consumption and MDA formation. In contrast, histidine, another 1O2 trap does not effect neither oxygen consumption, nor MDA production. On the other hand, β-carotene, a 1O2 quencher strongly depresses oxygen consumption but slightly affects MDA production. Such results are consistent with the generation of 1O2 as transient by product of peroxidative microsomal lipid decomposition. 相似文献
10.
Absorption spectroscopy measurements of the binding of aromatic donors and competitive inhibitors to horseradish peroxidase indicate that they are bound to the enzyme through hydrophobic forces and hydrogen bonding. Nuclear magnetic resonance experiments show that the minimal distances between the enzyme iron and the protons of a typical donor, p-cresol, are 7.0 ± 0.5, 7.7 ± 0.5 and 8.5 ± 0.5 Å, for the ortho-, meta- and methyl-protons, respectively.A model for the binding of aromatic donors to horseradish peroxidase based on this result is presented. It is proposed that the aromatic ring is attached to a hydrophobic region in the protein interior and the phenol oxygen is hydrogen-bonded to the pyrrolic nitrogen of the iron-coordinated histidine. This structure is compatible with the proton-iron distances measured and offers an intramolecular path for electron conduction from donor to heme analogous to that proposed by Winfield for the peroxidases. 相似文献
11.
I Morishima T Inubushi S Neya S Ogawa T Yonezawa 《Biochemical and biophysical research communications》1977,78(2):739-746
The 15N paramagnetic shifts of iron-bound C15N? were studied for myoglobin, hemoglobin, cytochrome c and other modified hemoproteins. Two characteristic 15N resonances at 977 and 1045 ppm (with respect to 15NO3? as an internal standard) were found for human adult hemoglobin cyanide, while only single resonances were observed for other cyano hemoproteins. These two resonances are assigned to iron-bound C15N of α and β subunits of hemoglobin. The substantial difference in the C15N isotropic shifts in various hemoproteins is discussed in relation to iron-proximal histidine binding and heme-apoprotein interactions. 相似文献
12.
13.
High-resolution proton NMR spectra are reported for the paramagnetic ferric native and cyano complexes of the five major horseradish root peroxidase (HRP) isoenzymes (A1, A2, A3, B, and C). Axial imidazole resonances are observed in the native and cyano-complex spectra of all the isoenzymes, thus indicating the presence of a common axial histidine ligand. Proton NMR spectra outside the usual diamagnetic region are identical for sets of A1 and A2 isoenzymes and for the B and C isoenzyme set. Variation in heme residue chemical shift positions may be controlled in part by porphyrin vinyl side chain-protein interactions. Diverse upfield spectra among the isoenzymes reflect amino acid substitutions and/or conformational differences near the prosthetic group, as signals in this region must result from amino acid residues in proximity to the heme center. Acid-base dependence studies reveal an "alkaline" transition that converts the native high-spin iron (III) porphyrin to the low-spin state. The transition occurs at pH 9.3, 9.4, 9.8, and 10.9 for respective HRP A1, A2, A3, and C isoenzymes, respectively. Significantly, this ordering also reflects specific activities for the isoenzymes in the order A1 = A2 greater than A3 greater than B = C. Identical proton NMR spectra for A1/A2 and B/C isoenzyme sets parallel equivalent specific activities for members of a particular set. Proton NMR spectra thus appear to be highly sensitive to protein modifications that affect catalytic activity. 相似文献
14.
The binding of Hg(II) to poly(dA-dT) has been examined with proton NMR spectroscopy. Addition of HgCl2 between r (Hg2+/nucleotide) = 0 and 0.25 results in loss of the exchangeable imino N3H resonance of thymine, indicating preferential binding at this site. The nonexchangeable base resonances AH8, AH2, and TH6 shift their intensity downfield in a cooperative manner, indicating complexation which is slow on the NMR time scale and changes in the polymer conformation upon binding. At r = 0.25, the polymer is cross-linked, and an increase in temperature does not result in denaturation of the polymer, as evidenced by the thymine proton resonance chemical shifts. The chemical shifts of the AH2 and T(CH3)5 base resonances allow some general conclusions to be made about the stereochemistry of this complex. 相似文献
15.
Conformation of alamethicin in oriented phospholipid bilayers determined by (15)N solid-state nuclear magnetic resonance 下载免费PDF全文
Bak M Bywater RP Hohwy M Thomsen JK Adelhorst K Jakobsen HJ Sørensen OW Nielsen NC 《Biophysical journal》2001,81(3):1684-1698
The conformation of the 20-residue antibiotic ionophore alamethicin in macroscopically oriented phospholipid bilayers has been studied using (15)N solid-state nuclear magnetic resonance (NMR) spectroscopy in combination with molecular modeling and molecular dynamics simulations. Differently (15)N-labeled variants of alamethicin and an analog with three of the alpha-amino-isobutyric acid residues replaced by alanines have been investigated to establish experimental structural constraints and determine the orientation of alamethicin in hydrated phospholipid (dimyristoylphosphatidylcholine) bilayers and to investigate the potential for a major kink in the region of the central Pro(14) residue. From the anisotropic (15)N chemical shifts and (1)H-(15)N dipolar couplings determined for alamethicin with (15)N-labeling on the Ala(6), Val(9), and Val(15) residues and incorporated into phospholipid bilayer with a peptide:lipid molar ratio of 1:8, we deduce that alamethicin has a largely linear alpha-helical structure spanning the membrane with the molecular axis tilted by 10-20 degrees relative to the bilayer normal. In particular, we find compatibility with a straight alpha-helix tilted by 17 degrees and a slightly kinked molecular dynamics structure tilted by 11 degrees relative to the bilayer normal. In contrast, the structural constraints derived by solid-state NMR appear not to be compatible with any of several model structures crossing the membrane with vanishing tilt angle or the earlier reported x-ray diffraction structure (Fox and Richards, Nature. 300:325-330, 1982). The solid-state NMR-compatible structures may support the formation of a left-handed and parallel multimeric ion channel. 相似文献
16.
17.
The inhibition mechanism of Tb(III) on horseradish peroxidase (HRP) in vitro was discussed. The results from MALDI-TOF/MS and X-ray photoelectron spectroscopy (XPS) showed that Tb(III) mainly interacts with the O-containing groups of the amides in the polypeptide chains of the HRP molecules and forms the complex of Tb(III)-HRP, and, in the complex, the molar ratio Tb(III)/HRP is 2 : 1. The results from CD and atomic force microscopy (AFM) indicated that the coordination effect between Tb(III) and HRP can lead to the conformation change in the HRP molecule, in which the contents of alpha-helix and beta-sheet conformation in the peptide of the HRP molecules is decreased, and the content of the random coil conformation is increased. Meanwhile, the coordination effect also leads to the decrease in the content of inter- and intrapeptide-chain H-bonds in the HRP molecules, resulting in the HRP molecular looseness and/or aggregation. Thus, the conformation change in the HRP molecules can significantly decrease the electrochemical reaction of HRP and its electrocatalytic activity for the reduction of H2O2. 相似文献
18.
Products formed from the lactoperoxidase (LPO) catalyzed oxidation of thiocyanate ion (SCN-) with hydrogen peroxide (H2O2) have been studied by 13C-NMR at pH 6 and pH 7. Ultimate formation of hypothiocyanite ion (OSCN-) as the major product correlates well with the known optical studies. The oxidation rate of SCN- appears to be greater at pH < or = 6.0. At [H2O2]/[SCN-] ratios of < or = 0.5, OSCN- is not formed immediately, but an unidentified intermediate is produced. At [H2O2]/[SCN-] > 0.5, SCN- appears to be directly oxidized to OSCN-. Once formed, OSCN- slowly degrades over a period of days to carbon dioxide (CO2), bicarbonate ion (HCO3-), and hydrogen cyanide (HCN). An additional, previously unrecognized product also appears after formation of OSCN-. On the basis of carbon-13 chemical shift information this new species is suggested to result from rearrangement of OSCN- to yield the thiooxime isomer, SCNO- or SCNOH. 相似文献
19.
Spectrofluorimetric and spectrophotometric studies were done to understand the binding of hematoporphyrin, a photosensitizer to horseradish peroxidase (EC1.11.1.7). The binding affinity constant (K) decreases as the state of aggregation of the porphyrin increases, while the number of binding sites (approximately 1) remains unchanged. The interaction appears to be mostly hydrophobic, entropy-driven and endothermic process. Hematoporphyrin potentiates horseradish peroxidase-catalyzed H2O2-mediated NADH oxidation, probably by porphyrin-influenced removal of superoxide radicals, which are generated in the system. Conformational change of the protein due to its interaction with porphyrin may be associated with potentiation of the catalytic activity of the enzyme. 相似文献
20.
Alain Mucchielli Claude Aussel René Masseyeff 《Biochemical and biophysical research communications》1980,94(3):894-900
Horseradish peroxidase and horse heart microperoxidase can bind estradiol to human or bovine serum albumin in the presence of hydrogen peroxide. However, we have shown here that, in the absence of serum albumin, the hormone was fixed by the enzyme molecule itself. Evidence is presented that (a) the hormone is transformed into a water-soluble and dialysable derivative of estradiol; (b) this new product is easily separated from the enzyme by gel filtration chromatography. It appears to have a high affinity for the chromatographic gel. The implications of the binding of an estradiol derivative to peroxidases are discussed. 相似文献