首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The absolute amount of microbial biomass and relative contribution of fungi and bacteria are expected to vary among types of organic matter (OM) within a stream and will vary among streams because of differences in organic matter quality and quantity. Common types of benthic detritus [leaves, small wood, and fine benthic organic matter (FBOM)] were sampled in 9 small (1st-3rd order) streams selected to represent a range of important controlling factors such as surrounding vegetation, detritus standing stocks, and water chemistry. Direct counts of bacteria and measurements of ergosterol (a fungal sterol) were used to describe variation in bacterial and fungal biomass. There were significant differences in bacterial abundance among types of organic matter with higher densities per unit mass of organic matter on fine particles relative to either leaves or wood surfaces. In contrast, ergosterol concentrations were significantly greater on leaves and wood, confirming the predominance of fungal biomass in these larger size classes. In general, bacterial abundance per unit organic matter was less variable than fungal biomass, suggesting bacteria will be a more predictable component of stream microbial communities. For 7 of the 9 streams, the standing stock of fine benthic organic matter was large enough that habitat-weighted reach-scale bacterial biomass was equal to or greater than fungal biomass. The quantities of leaves and small wood varied among streams such that the relative contribution of reach-scale fungal biomass ranged from 10% to as much as 90% of microbial biomass. Ergosterol concentrations were positively associated with substrate C:N ratio while bacterial abundance was negatively correlated with C:N. Both these relationships are confounded by particle size, i.e., leaves and wood had higher C:N than fine benthic organic matter. There was a weak positive relationship between bacterial abundance and streamwater soluble reactive phosphorus concentration, but no apparent pattern between either bacteria or fungi and streamwater dissolved inorganic nitrogen. The variation in microbial biomass per unit organic matter and the relative abundance of different types of organic matter contributed equally to driving differences in total microbial biomass at the reach scale.  相似文献   

2.
1. Most allochthonous plant detritus moves through stream ecosystems as fine particulate organic matter (FPOM), whose associated microbial communities, unlike those of coarse detritus, have received little scrutiny. 2. Benthic POM was collected from a fourth-order boreal river and two first-order tributaries in northern New York during July 1991, sorted it into eight size fractions ranging from 38 to >4000 μm, and assayed each fraction for ergosterol, DNA, and the activity of nine extracellular enzymes: β-1, 4-glucosidase, endocellulase, cellobiohydrolase, phenol oxidase, peroxidase, β-N-acetylglucosaminidase, acid phosphatase, alkaline phosphatase, and aryl sulphatase. In addition, DNA-DNA hybridization was used to investigate the structural similarity of the microbial communities associated with the FPOM fractions. 3. Various enzymes showed distinct activity patterns in relation to particle size as well as among sites. Half of the possible pairwise correlations among enzyme variables were statistically significant, but no enzyme activities were correlated with biomass indices (DNA and ergosterol concentration). DNA-DNA dot-blot hybridizations suggested extensive structural similarity among the microbial communities associated with FPOM fractions. 4. Cluster analysis was used to compare microbial functional similarity, measured by enzyme assays, and structural similarity, measured by DNA—DNA hybridization. Comparison of cluster coefficients showed a weak correlation between community structural similarity and functional similarity (r= 0.51) with fifteen of eighteen fractions grouped within a narrow range of distance. 5. The results suggest a convergence in microbially mediated FPOM processing despite system-level differences in litter and water quality.  相似文献   

3.
The dynamics of carbon (C), nitrogen (N), and phosphorus (P), elemental ratios, and dark uptake/release of N and P in bacterial and phytoplankton size fractions were studied during summer 1992 in three lakes of contrasting food web structure and trophic status (L240, L110, L227). We wished to determine if phytoplankton and bacteria differed in their elemental characteristics and to evaluate whether the functional role of bacteria in nutrient cycling (i.e., as sink or source) depended on bacterial elemental characteristics. Bacterial contributions to total suspended particulate material and to fluxes of nutrients in the dark were substantial and varied for different elements. This indicated that some techniques for assaying phytoplankton physiological condition are compromised by bacterial contributions. C/N ratios were generally less variable than C/P and N/P ratios. Both elemental ratios and biomass-normalized N and P flux indicated that phytoplankton growth in each lake was predominantly P-limited, although in L227 these data reflect the dominance of N-fixing cyanobacteria, and N was likely limiting early in the sampling season. In L227, phytoplankton N/P ratio and biomass-normalized N flux were negatively correlated, indicating that flux data were likely a reasonable measure of the N status of the phytoplankton. However, for L227 phytoplankton, P-flux per unit biomass was a hyperbolic function of N/P, suggesting that the dominant L227 cyanobacteria have a limited uptake and storage capacity and that P-flux per unit biomass may not be a good gauge of the P-limitation status of phytoplankton in this situation. Examination of N-flux data in the bacterial size fraction relative to the N/P ratio of the bacteria revealed a threshold N/P ratio (22:1 N/P, by atoms), below which, bacteria took up and sequestered added N, and above which, N was released. Thus, the functional role of bacteria in N cycling in these ecosystems depended on their N/P stoichiometry.  相似文献   

4.
Straw from wheat plants grown at ambient and elevated atmospheric CO2 concentrations was placed in litterbags in a grass fallow field and a wheat field. The CO2 treatment induced an increase in straw concentration of ash‐free dry mass from 84% to 93% and a decrease in nitrogen concentration from 0.43% to 0.34%. After five months of decomposition, less than 50% of the straw was decomposed. The content of ash‐free dry mass remaining in straw from plants grown at elevated CO2 was significantly higher than that from plants grown at ambient CO2 (4.02 vs. 3.69 g AFDM per litterbag in the fallow field and 3.40 vs. 2.67 g AFDM per litterbag when buried in the wheat field). The immobilization of nitrogen during decomposition was significantly higher in the ambient straw, and there was a significant negative correlation between the content of organic matter remaining per litterbag and the nitrogen concentration in the recovered straw samples. After five months of decomposition, hyphal biomass was significantly lower in straw from plants grown at elevated CO2 (? 30% and ?13% in the fallow and wheat field, respectively). Bacterial biomass was not significantly affected by the CO2 induced changes in the litter quality, but the lower decomposition rate and fewer bacterial grazers in the straw from plants grown at elevated CO2 together indicate reduced microbial activity and turnover. Notwithstanding this, these data show that growth at elevated atmospheric CO2 concentration results in slower decomposition of wheat straw, but the effect is probably of minor importance compared to the effect of varying crops, agricultural practise or changing land use.  相似文献   

5.
Large storm events can not only increase the runoff mass exports of particulate organic matter (POM) from watersheds, but can also alter the sources, size distribution, and composition of POM. We investigated the quantity, particle size distribution, carbon (C) and nitrogen (N) content, and sources of POM for five locations longitudinally along a forested Piedmont stream. POM was sampled for multiple storm events of varying magnitude and intensity over a two-year period. POM was separated into coarse (CPOM), medium (MPOM), and fine (FPOM) size classes, and sources were estimated using stable isotopes of 13C and 15N with a Bayesian mixing model. CPOM largely resembled less-degraded vascular plant material characteristic of forest floor litter, which was estimated to contribute to ~40% of CPOM in upstream locations. FPOM was derived from a more variable mixture of sources with stream beds and stream banks playing a greater role at larger drainage locations (up to ~50 and ~30%, respectively). Contributions from both forest floor litter and humus to CPOM increased with increasing event runoff, and litter contributions increased during events with higher rainfall intensities. Higher C and N content was noted in coarse sediments and finer POM fractions appeared to be more degraded based on C:N and isotope ratios. Climate-change projections predict intensification of large storm events in the Northeastern US. Results of this study suggest that large storms will increase the fluvial exports of coarse, labile, C- and N-rich POM with subsequent impacts on receiving aquatic ecosystems.  相似文献   

6.
The detrital food web is a major nexus of energy flow in nearly all aquatic ecosystems. Energy enters this nexus by microbial assimilation of detrital carbon. To link microbiological variables with ecosystem process, it is necessary to understand the regulatory hierarchy that controls the distribution of microbial biomass and activity. Toward that goal, we investigated variability in microbial abundance and activities within the tidal freshwater estuary of the Hudson River. Surface sediments were collected from four contrasting sites: a mid-channel shoal, two types of wetlands, and a tributary confluence. These samples, collected in June to August 1992, were sorted into two to four size fractions, depending on the particle size distribution at each site. Each fraction was analyzed for bacterial biomass (by acridine orange direct counting), bacterial production (by 3H-thymidine incorporation into DNA), fungal biomass (by ergosterol extraction), fungal production (by biomass accrual), and the potential activities of seven extracellular enzymes involved in the degradation of detrital structural molecules. Decomposition rates for particulate organic carbon (POC) were estimated from a statistical model relating mass loss rates to endocellulase activity. Within samples, bacterial biomass and productivity were negatively correlated with particle size: Standing stocks and rates in the <63-m class were roughly twofold greater than in the >4-mm class. Conversely, fungal biomass was positively correlated with particle size, with standing stocks in the largest size class more than 1OX greater than in the smallest. Extracellular enzyme activities also differed significantly among size classes, with high carbohydrase activities associated with the largest particles, while oxidative activities predominated in the smallest size classes. Among sites, the mid-channel sediments had the lowest POC standing stock (2% of sediment dry mass) and longest turnover time (approximately 1.7 years), with bacterial productivity approximately equal to fungal (56 vs. 46 g C per gram POC per day, respectively). In the Typha wetland, POC standing stock was high (10%); turnover time was about 0.3 years; and 90% of the microbial productivity was fungal (670 vs. 84 g C per gram POC per day). The other two sites, a Trapa wetland and a tributary confluence, showed intermediate values for microbial productivity and POC turnover. Differences among sites were described by regression models that related the distribution of microbial biomass (r 2 = 0.98) and productivity (r 2 = 0.81) to particle size and carbon quality. These factors also determined POC decomposition rates. Net microbial production efficiency (production rate/decomposition rate) averaged 10.6%, suggesting that the sediments were exporting large quantities of unassimilated dissolved organic carbon into the water column. Our results suggest that studies of carbon processing in large systems, like the Hudson River estuary, can be facilitated by regression models that relate microbial dynamics to more readily measured parameters. Correspondence to: R.L. Sinsabaugh  相似文献   

7.
The initial quantitative breakdown of fine particulate organic matter (FPOM) was investigated by measuring the loss (over 73 days) of substrate mass of particles of known size ranges (53–125 µm, 125–250 µm, 250–500 µm, 500 µm-1 mm) and derived from known organic sources (Alnus rubra, Acer macrophyllum, Polystichum munitum). Qualitative examinations (organic content, C : N ratio) also were made. Particles ranging from 500 µm to 1 mm in diameter differed greatly from particles in other size ranges, and results of studies with these particles closely resembled results of coarse particulate (CPOM) leaf pack studies. Despite variation, alder particles generally exhibited the greatest mass loss, those of sword-fern, the least, and mass loss of bigleaf maple particles was intermediate. Organic contents of all particle substrates decreased over time. In general, the C : N ratios of alder particles increased, those of bigleaf maple decreased, and those of sword-fern exhibited little change. All particle substrates were incubated in the field in vials, which allowed for influx of natural detritus of unknown source and period of residence. Given the overall abundance and prevalence of the FPOM resource in lotic systems, standardization of a procedure such as that used in this investigation would be useful in extending understanding of stream system processes, including detrital processing and decomposition.  相似文献   

8.
BACKGROUND: Broad scaling relationships between leaf size and function do not take into account that leaves of different size may contain different fractions of support in petiole and mid-rib. METHODS: The fractions of leaf biomass in petiole, mid-rib and lamina, and the differences in chemistry and structure among mid-ribs, petioles and laminas were investigated in 122 species of contrasting leaf size, life form and climatic distribution to determine the extent to which differences in support modify whole-lamina and whole-leaf structural and chemical characteristics, and the extent to which size-dependent support investments are affected by plant life form and site climate. KEY RESULTS: For the entire data set, leaf fresh mass varied over five orders of magnitude. The percentage of dry mass in mid-rib increased strongly with lamina size, reaching more than 40 % in the largest laminas. The whole-leaf percentage of mid-rib and petiole increased with leaf size, and the overall support investment was more than 60 % in the largest leaves. Fractional support investments were generally larger in herbaceous than in woody species and tended to be lower in Mediterranean than in cool temperate and tropical plants. Mid-ribs and petioles had lower N and C percentages, and lower dry to fresh mass ratio, but greater density (mass per unit volume) than laminas. N percentage of lamina without mid-rib was up to 40 % higher in the largest leaves than the total-lamina (lamina and mid-rib) N percentage, and up to 60 % higher than whole-leaf N percentage, while lamina density calculated without mid-rib was up to 80 % less than that with the mid-rib. For all leaf compartments, N percentage was negatively associated with density and dry to fresh mass ratio, while C percentage was positively linked to these characteristics, reflecting the overall inverse scaling between structural and physiological characteristics. However, the correlations between N and C percentages and structural characteristics differed among mid-ribs, petioles and laminas, implying that the mass-weighted average leaf N and C percentage, density, and dry to fresh mass ratio can have different functional values depending on the importance of within-leaf support investments. CONCLUSIONS: These data demonstrate that variation in leaf size is associated with major changes in within-leaf support investments and in large modifications in integrated leaf chemical and structural characteristics. These size-dependent alterations can importantly affect general leaf structure vs. function scaling relationships. These data further demonstrate important life-form effects on and climatic differentiation in foliage support costs.  相似文献   

9.
Bacterial and fungal biomass was estimated in incubated samples of three cultivated soils, the influence of glucose, ammonium nitrate and cattle slurry on its formation being studied. The microbial biomass was determined in stained microscopic preparations of soil suspension. Bacterial biomass in the control samples was from 0.17 to 0.66 mg dry wt per 1 g dry soil and independently of the applied supplements was on the average two times larger in muck soils than in sand. Fungal biomass in the control soils ranged from 0.013 to 0.161 mg dry wt per 1 g dry soil, no relationship being found between its size and the soil type. As a result, the ratio of the size of fungal to bacterial biomass was dependent on the soil type; in sand the fungal biomass corresponded to 1/3 of the bacterial biomass, and in muck soils--only to 1/7.  相似文献   

10.
BACKGROUND AND AIMS: The aim of this study was to investigate the effects of the interactions between the microbial symbionts, Rhizobium and arbuscular mycorrhizal fungi (AMF) on N and P accumulation by broad bean (Vicia faba) and how increased N and P content influence biomass production, leaf area and net photosynthetic rate. METHODS: A multi-factorial experiment consisting of four different legume-microbial symbiotic associations and two nitrogen treatments was used to investigate the influence of the different microbial symbiotic associations on P accumulation, total N accumulation, biomass, leaf area and net photosynthesis in broad bean grown under low P conditions. KEY RESULTS: AMF promoted biomass production and photosynthetic rates by increasing the ratio of P to N accumulation. An increase in P was consistently associated with an increase in N accumulation and N productivity, expressed in terms of biomass and leaf area. Photosynthetic N use efficiency, irrespective of the inorganic source of N (e.g. NO3- or N2), was enhanced by increased P supply due to AMF. The presence of Rhizobium resulted in a significant decline in AMF colonization levels irrespective of N supply. Without Rhizobium, AMF colonization levels were higher in low N treatments. Presence or absence of AMF did not have a significant effect on nodule mass but high N with or without AMF led to a significant decline in nodule biomass. Plants with the Rhizobium and AMF symbiotic associations had higher photosynthetic rates per unit leaf area. CONCLUSIONS: The results indicated that the synergistic or additive interactions among the components of the tripartite symbiotic association (Rhizobium-AMF-broad bean) increased plant productivity.  相似文献   

11.
Epilithic bacterial and algal biomass were compared among a run, riffle, and pool along an open-canopy section of a third-order, temperate stream. Epilithic biofilms were sampled after 3, 7, 14, 21, 28, and 35 days colonization on unglazed ceramic tiles that were attached to plastic trays (n = 3) placed across each of the three habitats (i.e., run, riffle, pool). The diverse habitats and sampling regime were selected to provide a range in algal biomass so that potential covariation between epilithic bacterial and algal biomass could be assessed. There were significant differences among habitats and among trays within each habitat for both chlorophyll a and AFDM. Chlorophyll a and AFDM increased in the run and pool throughout the colonization period. In the riffle, chlorophyll a and AFDM increased rapidly early in colonization, then decreased. Epilithic bacterial biomass increased rapidly with no significant differences among the three habitats throughout colonization. Further, bacterial biomass did not correlate with either chlorophyll a or AFDM in any of the three habitats or on any of the sampling days. These results suggest that epilithic algal and bacterial biomass may be regulated by independent controls in some stream environments.  相似文献   

12.
Plant and microbial community composition in connection with soil chemistry determines soil nutrient cycling. The study aimed at demonstrating links between plant and microbial communities and soil chemistry occurring among and within four sites: two pine forests with contrasting soil pH and two grasslands of dissimilar soil chemistry and vegetation. Soil was characterized by C and N content, particle size, and profiles of low-molecular-weight compounds determined by high-performance liquid chromatography (HPLC) of soil extracts. Bacterial and actinobacterial community composition was assessed by terminal restriction fragment length polymorphism (T-RFLP) and cloning followed by sequencing. Abundances of bacteria, fungi, and actinobacteria were determined by quantitative PCR. In addition, a pool of secondary metabolites was estimated by erm resistance genes coding for rRNA methyltransferases. The sites were characterized by a stable proportion of C/N within each site, while on a larger scale, the grasslands had a significantly lower C/N ratio than the forests. A Spearman's test showed that soil pH was correlated with bacterial community composition not only among sites but also within each site. Bacterial, actinobacterial, and fungal abundances were related to carbon sources while T-RFLP-assessed microbial community composition was correlated with the chemical environment represented by HPLC profiles. Actinobacteria community composition was the only studied microbial characteristic correlated to all measured factors. It was concluded that the microbial communities of our sites were influenced primarily not only by soil abiotic characteristics but also by dominant litter quality, particularly, by percentage of recalcitrant compounds.  相似文献   

13.
Epilithic bacterial community viability was assessed on natural biofilm assemblages from environmentally contrasting locations over a 17-months period to determine if it reflects environmental conditions or conditions within the biofilm assemblage. Vital state was assessed by membrane integrity using LIVE/DEAD® BacLight? staining kit. Samples were regularly collected in a large river, up and downstream of a large urban centre. Epilithic biomasses were similar between sites irrespective of the distinct water quality but varied temporarily, peaking up to 48 g AFDM m?2. Bacterial community composition assessed by 16S rDNA based PCR-DGGE significantly differed between sites. Bacterial densities (median of 2.5 × 1011 cell g AFDM?1) were stable whatever the sample origin or biomass. Viable bacterial fractions ranged between 13 and 83% of the total bacterial densities and were correlated with hydrological stability indicators (average of 41.9% during stable water periods, 62.4% during intermediate flow regimes and 50.0% during flow instability) and seasonal parameters. At the river section and epilithic community scales, consistent bacterial densities per unit of biomass could reflect a biofilm assemblage carrying capacity while variable membrane integrity likely integrates changes in the vital state of the community under changing environmental conditions.  相似文献   

14.
Bacterial production at the expense of vascular plant detritus was measured for three emergent plant species (Juncus effusus, Panicum hemitomon, and Typha latifolia) degrading in the littoral zone of a thermally impacted lake. Bacterial secondary production, measured as tritiated thymidine incorporation into DNA, ranged from 0.01 to 0.81 microgram of bacterial C mg of detritus-1 day-1. The three plant species differed with respect to the amount of bacterial productivity they supported per milligram of detritus, in accordance with the predicted biodegradability of the plant material based on initial nitrogen content, lignin content, and C/N ratio. Bacterial production also varied throughout the 22 weeks of in situ decomposition and was positively related to the nitrogen content and lignin content of the remaining detritus, as well as to the temperature of the lake water. Over time, production was negatively related to the C/N ratio and cellulose content of the degrading plant material. Bacterial production on degrading plant material was also calculated on the basis of plant surface area and ranged from 0.17 to 1.98 micrograms of bacterial C cm-2 day-1. Surface area-based calculations did not correlate well with either initial plant composition or changing composition of the remaining detritus during decomposition. The rate of bacterial detritus degradation, calculated from measured production of surface-attached bacteria, was much lower than the actual rate of weight loss of plant material. This discrepancy may be attributable to the importance of nonbacterial organisms in the degradation and loss of plant material from litterbags or to the microbially mediated solubilization of particulate material prior to bacterial utilization, or both.  相似文献   

15.
中国北方农牧交错带温性盐碱化草地土壤有机碳库对全球气候变暖的响应趋势存在较大不确定性。作为温性盐碱性草地的典型分布区,山西右玉农牧交错带是探索相关研究的理想生境。基于山西农业大学野外观测研究站开顶式气室模拟增温实验平台,通过采集生长旺季土壤样品,探索温性盐碱化草地不同土层有机碳、氮组分对模拟增温的响应与适应机制。结果表明:(1)不同增温处理对土壤有机碳(C)、总氮(N)、颗粒性有机碳(POM-C)和氮(POM-N)、矿物结合态有机碳(MAOM-C)和氮(MAOM-N)、可溶性有机碳(DOC)和氮(DON),以及微生物量碳(MBC)和氮(MBN)等组分无显著影响,但显著降低了MAOM-C/MBC的比值;(2)除土壤可溶性有机碳和微生物量碳外,土壤碳、氮各组分均随土层深度加深而呈现递减趋势,土壤碳、氮各组分之间的比值,除MAOM-N/N和MBC/C外,均随土层深度的增加而呈现显著上升趋势;(3)增温对POM-N/MBN和MAOM-N/MBN的影响与土层深度存在明显的交互效应;(4)不同土层氮组分比值对增温的响应与禾草丰度、杂类草丰度、凋落物量、土壤pH值及土壤含水量等因素有关。其中,凋落物...  相似文献   

16.
Particle size and compositional variance are found to have a substantial influence on ammonia fiber explosion (AFEX) pretreatment and enzymatic hydrolysis of lignocellulosic biomass. Corn stover was milled and fractionated into particle sizes of varying composition. The larger particle size fractions (rich in corn cob and stalk portions) were found to be more recalcitrant to hydrolysis compared to the smaller size fractions (rich in leaves and husk portion). Electron spectroscopy for chemical analysis (ESCA) and Fourier transform infrared spectroscopy (FTIR) were used for biomass surface and bulk compositional analysis, respectively. The ESCA results showed a 15-30% decrease in the O/C (oxygen to carbon) ratio after the pretreatment indicating an increase in the hydrophobic nature of biomass surface. FTIR results confirmed cleavage of the lignin-carbohydrate complex (LCC) for the AFEX-treated fractions. The spectroscopic results indicate the extraction of cleaved lignin phenolic fragments and other cell wall extractives to the biomass surface upon AFEX. Water washing of AFEX-treated fractions removed some of the hydrophobic extractives resulting in a 13% weight loss (dry weight basis). Phenolic content of wash stream was evaluated by the modified Prussian blue (MPB) method. Removal of ligno-phenolic extractives from the AFEX-treated biomass by water washing vastly improved the glucan conversion as compared to the unwashed samples. Reduction in substrate particle size was found to affect the AFEX process and rate of hydrolysis as well. Implications of the stover particle size, composition, and inhibitory role of the phenolic fragments on an integrated biorefinery are discussed.  相似文献   

17.
To construct a budget of carbon transformations occurring during leaf decomposition, alder leaves were placed in a woodland stream, later retrieved at weekly intervals, and rates of fungal and bacterial production, microbial respiration, and release of dissolved organic matter (DOM) and fine particulate organic matter (FPOM) were determined during short laboratory incubations. Carbon dioxide was the major decomposition product, explaining 17% of the microbially mediated leaf mass loss. DOM and FPOM were also important products (5 and 3% of total mass loss, respectively), whereas carbon flow to microbial biomass was low (2%). Fungal biomass in leaves always exceeded bacterial biomass (95–99% of total microbial biomass), but production of bacteria and fungi was similar, indicating that both types of microorganisms need to be considered when examining leaf decomposition in streams. Comparison of leaf mass loss in coarse and fine mesh bags revealed, in addition, that the shredder, Gammarus pulex, had a major impact on leaf decomposition in this study.  相似文献   

18.
郭洁芸  王雅歆  李建龙 《生态学报》2022,42(12):4823-4833
近年来,中国大气氮沉降水平不断增加,过量的活性氮输入深刻影响了我国陆地生态系统碳循环。虽然已有大量的研究报道了模拟氮添加实验对我国陆地生态系统碳动态的影响,但是由于复杂的地理条件和不同的施氮措施,关于植物和土壤碳库对氮添加的一般响应特征和机制仍存在广泛争议。因此,采用整合分析方法,收集整理了172篇已发表的中国野外氮添加试验结果,在全国尺度上探究氮添加对我国陆地生态系统植物和土壤碳动态的影响及其潜在机制。结果表明,氮添加显著促进了植物的碳储存,地上和地下生物量均显著增加,且地上生物量比地下生物量增加得多。同时,氮添加显著增加了凋落物质量,但对细根生物量没有显著影响。氮添加显著降低了植物叶片、凋落物和细根的碳氮比。总体上,氮添加显著增加了土壤有机碳含量并降低了土壤pH值,但对可溶性有机碳、微生物生物量碳和土壤呼吸的影响并不显著。在不同的地理条件下,土壤有机碳含量对氮添加的响应呈现增加、减少或不变的不同趋势。回归分析表明,地上生物量与土壤有机碳含量之间,以及微生物生物量碳与土壤有机碳含量之间呈负相关关系。虽然氮添加通过增加凋落物质量显著促进了植物碳输入,但同时也会通过刺激微生物降解来增加土...  相似文献   

19.
氮沉降对长白山森林土壤团聚体内碳、氮含量的影响   总被引:1,自引:0,他引:1  
氮沉降是影响陆地生态系统碳、氮循环的最重要因素之一.为了解土壤团聚体碳、氮组分对氮沉降的响应,本研究在长白山选取次生杨桦林(YHL)与原始阔叶红松林(HSL)两种林型进行为期6年的氮添加试验,采集土壤样品并分析氮沉降对不同粒径土壤团聚体中可溶性有机碳、氮(DOC和DON)、微生物生物量碳、氮(MBC和MBN)、颗粒有机碳、氮(POC和PON)的影响.结果表明: 除POC和PON外,两林分土壤团聚体碳、氮组分含量均随团聚体粒径的减小而增加;氮添加处理显著降低了HSL土壤团聚体中POC和PON含量,降幅分别达20.7%和22.6%,显著增加了DOC含量,增幅达11.6%;氮添加处理对YHL土壤团聚体的碳、氮组分均无显著影响,其中,对DOC和MBC的影响接近于显著(0.05<P<0.1).皮尔森相关分析结果表明,土壤团聚体中总碳或总氮与碳、氮活性组分之间有良好的相关性,其中,HSL土壤的POC与DOC之间呈极显著负相关(r=-0.503),DOC又与MBC呈显著正相关关系(r=0.462).氮添加处理降低阔叶红松林土壤团聚体中POC和PON含量、增加DOC含量的主要原因是其促进了微生物对POM的分解,进而导致DOC的释放.阔叶红松林土壤碳、氮库对氮沉降的响应比次生杨桦林更加敏感.  相似文献   

20.
Although fungi are known to colonize and decompose plant tissues in various environments, there is scanty information on fungal communities on wetland plants, their relation to microhabitat conditions, and their link to plant litter decomposition. We examined fungal diversity and succession on Phragmites australis leaves both attached to standing shoots and decaying in the litter layer of a brackish tidal marsh. Additionally, we followed changes in fungal biomass (ergosterol), leaf nitrogen dynamics, and litter mass loss on the sediment surface of the marsh. Thirty-five fungal taxa were recorded by direct observation of sporulation structures. Detrended correspondence analysis and cluster analysis revealed distinct communities of fungi sporulating in the three microhabitats examined (middle canopy, top canopy, and litter layer), and indicator species analysis identified a total of seven taxa characteristic of the identified subcommunities. High fungal biomass developed in decaying leaf blades attached to standing shoots, with a maximum ergosterol concentration of 548 ± 83 μg g–1 ash-free dry mass (AFDM; mean ± SD). When dead leaves were incorporated in the litter layer on the marsh surface, fungi experienced a sharp decline in biomass (to 191 ± 60 μg ergosterol g–1 AFDM) and in the number of sporulation structures. Following a lag phase, species not previously detected began to sporulate. Leaves placed in litter bags on the sediment surface lost 50% of their initial AFDM within 7 months (k = −0.0035 day–1) and only 21% of the original AFDM was left after 11 months. Fungal biomass accounted for up to 34 ± 7% of the total N in dead leaf blades on standing shoots, but to only 10 ± 4% in the litter layer. These data suggest that fungi are instrumental in N retention and leaf mass loss during leaf senescence and early aerial decay. However, during decomposition on the marsh surface, the importance of living fungal mass appears to diminish, particularly in N retention, although a significant fraction of total detrital N may remain associated with dead hyphae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号