首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L Li  X Liu  Y Zhou  J Wang 《Biophysical journal》2012,102(9):2230-2233
In this article, we adopt a continuum model from Sun and Wirtz (2006. Biophys. J. 90:L10-L12) to show that, for the enveloped virus entry into host cells, the binding energy of the receptor-ligand complex can drive the engulfment of the viral particle to overcome the resistance alternatively dominated by the membrane deformation and cytoskeleton deformation at a different engulfing stage. This is contrary to the conclusions by Sun and Wirtz that the cytoskeleton deformation is always dominant. This discrepancy occurs because the energy of membrane deformation in their article is incorrect. Such an unfortunate small error has led to a severe underestimation of the contribution from membrane deformation to the total energy of the system, which then led them to improperly conclude that the cytoskeleton deformation plays the dominant role in the virus entry into host cell. By using the correct energy expression, our conclusion is justified by energy comparisons under a large range of virus sizes and Young's moduli of cytoskeleton. We even find that a critical radius of virus exists, beyond which the resistance to the virus engulfment becomes dominated by the membrane deformation during the whole stage, contrary to the point of view of Sun and Wirtz.  相似文献   

2.
Depletion effects are well known to lead to phase separation in microsystems consisting of large and small particles with short-range repulsive interactions that act over macromolecular length scales. The equilibrium mechanics between an enveloped colloidal particle and a biomembrane caused by entropy is investigated by using a continuum model. We show that the favorable contact energy stems from entropy, which is sufficient to drive engulfment of the colloidal particle, and deformation of the biomembrane determines the resistance to the engulfment of the colloidal particle. The engulfment process depends on the ratio of the radii of the larger particle and smaller particles and the bending rigidity. The results show insights into the effects of depletion on biomembrane budding and nanoparticle transportation by a vesicle.  相似文献   

3.
Broder DH  Pogliano K 《Cell》2006,126(5):917-928
A key step in bacterial endospore formation is engulfment, during which one bacterial cell engulfs another in a phagocytosis-like process that normally requires SpoIID, SpoIIM, and SpoIIP (DMP). We here describe a second mechanism involving the zipper-like interaction between the forespore protein SpoIIQ and its mother cell ligand SpoIIIAH, which are essential for engulfment when DMP activity is reduced or SpoIIB is absent. They are also required for the rapid engulfment observed during the enzymatic removal of peptidoglycan, a process that does not require DMP. These results suggest the existence of two separate engulfment machineries that compensate for one another in intact cells, thereby rendering engulfment robust. Photobleaching analysis demonstrates that SpoIIQ assembles a stationary structure, suggesting that SpoIIQ and SpoIIIAH function as a ratchet that renders forward membrane movement irreversible. We suggest that ratchet-mediated engulfment minimizes the utilization of chemical energy during this dramatic cellular reorganization, which occurs during starvation.  相似文献   

4.
Finite element-based computer simulations are used to investigate a number of phenomena, including tissue engulfment, cell sorting, and checkerboard-pattern formation, exhibited by heterotypic cell aggregates. The simulations show that these phenomena can be driven by a single equivalent force, namely a surface (or interfacial) tension, that results from cytoskeletal components and cell-cell adhesions. They also reveal that tissue engulfment, cell sorting, and checkerboard-pattern formation involve several discernible mechanical features or stages. With the aid of analytical arguments, we identify the conditions necessary for each of these phenomena. These findings are consistent with previous experimental investigations and computer simulations, but pose significant challenges to current theories of cell sorting and tissue engulfment.  相似文献   

5.
The recognition and removal of apoptotic cells is critical to development, tissue homeostasis, and the resolution of inflammation. Many studies have shown that phagocytosis is regulated by signaling mechanisms that involve distinct ligand-receptor interactions that drive the engulfment of apoptotic cells. Studies from our laboratory have shown that the plasma protein beta-2-glycoprotein 1 (beta2GP1), a member of the short consensus repeat superfamily, binds phosphatidylserine-containing vesicles and apoptotic cells and promotes their bridging and subsequent engulfment by phagocytes. The phagocyte receptor for the protein/apoptotic cell complex, however, is unknown. Here we report that a member of the low density lipoprotein receptor-related protein family on phagocytes binds and facilitates engulfment of beta2GP1-phosphatidylserine and beta2GP1-apoptotic cell complexes. Using recombinant beta2GP1, we also show that beta2GP1-dependent uptake is mediated by bridging of the target cell to the phagocyte through the protein C- and N-terminal domains, respectively.  相似文献   

6.
During spore formation in Bacillus subtilis, cell division occurs at the cell pole and is believed to require essentially the same division machinery as vegetative division. Intriguingly, although the cell division protein DivIB is not required for vegetative division at low temperatures, it is essential for efficient sporulation under these conditions. We show here that at low temperatures in the absence of DivIB, formation of the polar septum during sporulation is delayed and less efficient. Furthermore, the polar septa that are complete are abnormally thick, containing more peptidoglycan than a normal polar septum. These results show that DivIB is specifically required for the efficient and correct formation of a polar septum. This suggests that DivIB is required for the modification of sporulation septal peptidoglycan, raising the possibility that DivIB either regulates hydrolysis of polar septal peptidoglycan or is a hydrolase itself. We also show that, despite the significant number of completed polar septa that form in this mutant, it is unable to undergo engulfment. Instead, hydrolysis of the peptidoglycan within the polar septum, which occurs during the early stages of engulfment, is incomplete, producing a similar phenotype to that of mutants defective in the production of sporulation-specific septal peptidoglycan hydrolases. We propose a role for DivIB in sporulation-specific peptidoglycan remodelling or its regulation during polar septation and engulfment.  相似文献   

7.
Removal of apoptotic cells is a dynamic process coordinated by ligands on apoptotic cells, and receptors and other signaling proteins on the phagocyte. One of the fundamental challenges is to understand how different phagocyte proteins form specific and functional complexes to orchestrate the recognition/removal of apoptotic cells. One evolutionarily conserved pathway involves the proteins cell death abnormal (CED)-2/chicken tumor virus no. 10 (CT10) regulator of kinase (Crk)II, CED-5/180 kDa protein downstream of chicken tumor virus no. 10 (Crk) (Dock180), CED-12/engulfment and migration (ELMO) and MIG-2/RhoG, leading to activation of the small GTPase CED-10/Rac and cytoskeletal remodeling to promote corpse uptake. Although the role of ELMO : Dock180 in regulating Rac activation has been well defined, the function of CED-2/CrkII in this complex is less well understood. Here, using functional studies in cell lines, we observe that a direct interaction between CrkII and Dock180 is not required for efficient removal of apoptotic cells. Similarly, mutants of CED-5 lacking the CED-2 interaction motifs could rescue engulfment and migration defects in CED-5 deficient worms. Mutants of CrkII and Dock180 that could not biochemically interact could colocalize in membrane ruffles. Finally, we identify MIG-2/RhoG (which functions upstream of Dock180 : ELMO) as a possible point of crosstalk between these two signaling modules. Taken together, these data suggest that Dock180/ELMO and CrkII act as two evolutionarily conserved signaling submodules that coordinately regulate engulfment.  相似文献   

8.
Computational models of cell–cell mechanical interactions typically simulate sorting and certain other motions well, but as demands on these models continue to grow, discrepancies between the cell shapes, contact angles and behaviours they predict and those that occur in real cells have come under increased scrutiny. To investigate whether these discrepancies are a direct result of the straight cell–cell edges generally assumed in these models, we developed a finite element model that approximates cell boundaries using polylines with an arbitrary number of segments. We then compared the predictions of otherwise identical polyline and monoline (straight-edge) models in a variety of scenarios, including annealing, single- and multi-cell engulfment, sorting, and two forms of mixing—invasion and checkerboard pattern formation. Keeping cell–cell edges straight influences cell motion, cell shape, contact angle, and boundary length, especially in cases where one cell type is pulled between or around cells of a different type, as in engulfment or invasion. These differences arise because monoline cells have restricted deformation modes. Polyline cells do not face these restrictions, and with as few as three segments per edge yielded realistic edge shapes and contact angle errors one-tenth of those produced by monoline models, making them considerably more suitable for situations where angles and shapes matter, such as validation of cellular force–inference techniques. The findings suggest that non-straight cell edges are important both in modelling and in nature.  相似文献   

9.
The biochemical characteristics of complex formation in nuclear extracts from mock-infected and herpes simplex virus (HSV)-infected Vero and HeLa cells with a sequence downstream of and adjacent to the promoter for the HSV thymidine kinase gene were studied using the mobility shift electrophoresis assay. This region is bound by host cell proteins, as evidenced by the formation of complexes after incubation in extracts from mock-infected cells. Unique virus-specific complexes form in extracts prepared from infected cells, and these complexes contain ICP4, the major regulatory protein of HSV. Examination of the salt requirements for assembly and the stability of preformed DNA-protein complexes to added salt demonstrate the distinct nature of the complexes that form in each extract. This finding is supported by analyses of the relative association and dissociation rates of these complexes which show that complexes formed in extracts prepared from infected cells are kinetically labile. After depletion with chelators, the divalent cation requirements for complex formation were assayed by supplementation with various metal salts. Addition of Mn2+ restored binding activity in extracts from both mock-infected and infected HeLa cells. Finally, footprinting assays revealed that sequences on each strand throughout this region of the thymidine kinase gene were involved in complex formation only in extracts from mock-infected cells. These experiments suggest that one consequence of virus gene expression is to alter the interaction of cell proteins with virus DNA.  相似文献   

10.
During sporulation in Bacillus subtilis, the mother cell membranes migrate around the forespore in a phagocytic-like process called engulfment. Developmental gene expression requires the successful completion of this key morphological event. Here we show that perturbations to engulfment block the accumulation of proteins secreted into the space between the mother cell and forespore membranes. Our data support a model in which engulfment defects cause the proteolytic clearance of these secreted proteins. Importantly, we show that this degradative response is reversible; once proper engulfment is restored, secreted proteins again accumulate. In particular, we have found that the forespore signalling protein SpoIVB fails to accumulate when engulfment is impaired and, as a result, late mother cell gene expression under the control of sigma(K) is blocked. If engulfment is restored, SpoIVB accumulates and cell-cell signalling resumes. Thus, this degradative pathway functions like a developmental checkpoint ensuring that mother cell gene expression does not commence unless morphogenesis proceeds normally.  相似文献   

11.

Background

Cell-to-cell virus transmission of Human immunodeficiency virus type-1 (HIV-1) is predominantly mediated by cellular structures such as the virological synapse (VS). The VS formed between an HIV-1-infected T cell and a target T cell shares features with the immunological synapse (IS). We have previously identified the human homologue of the Drosophila Discs Large (Dlg1) protein as a new cellular partner for the HIV-1 Gag protein and a negative regulator of HIV-1 infectivity. Dlg1, a scaffolding protein plays a key role in clustering protein complexes in the plasma membrane at cellular contacts. It is implicated in IS formation and T cell signaling, but its role in HIV-1 cell-to-cell transmission was not studied before.

Methodology/Principal Findings

Kinetics of HIV-1 infection in Dlg1-depleted Jurkat T cells show that Dlg1 modulates the replication of HIV-1. Single-cycle infectivity tests show that this modulation does not take place during early steps of the HIV-1 life cycle. Immunofluorescence studies of Dlg1-depleted Jurkat T cells show that while Dlg1 depletion affects IS formation, it does not affect HIV-1-induced VS formation. Co-culture assays and quantitative cell-to-cell HIV-1 transfer analyses show that Dlg1 depletion does not modify transfer of HIV-1 material from infected to target T cells, or HIV-1 transmission leading to productive infection via cell contact. Dlg1 depletion results in increased virus yield and infectivity of the viral particles produced. Particles with increased infectivity present an increase in their cholesterol content and during the first hours of T cell infection these particles induce higher accumulation of total HIV-1 DNA.

Conclusion

Despite its role in the IS formation, Dlg1 does not affect the VS and cell-to-cell spread of HIV-1, but plays a role in HIV-1 cell-free virus transmission. We propose that the effect of Dlg1 on HIV-1 infectivity is at the stage of virus entry.  相似文献   

12.
Interplay between Rac and Rho in the control of substrate contact dynamics.   总被引:33,自引:0,他引:33  
BACKGROUND: Substrate anchorage and cell locomotion entail the initiation and development of different classes of contact sites, which are associated with the different compartments of the actin cytoskeleton. The Rho-family GTPases are implicated in the signalling pathways that dictate contact initiation, maturation and turnover, but their individual roles in these processes remain to be defined. RESULTS: We monitored the dynamics of peripheral, Rac-induced focal complexes in living cells in response to perturbations of Rac and Rho activity and myosin contractility. We show that focal complexes formed in response to Rac differentiated into focal contacts upon upregulation of Rho. Focal complexes were dissociated by inhibitors of myosin-II-dependent contractility but not by an inhibitor of Rho-kinase. The downregulation of Rac promoted the enlargement of focal contacts, whereas a block in the Rho pathway not only caused a dissolution of focal contacts but also stimulated membrane ruffling and formation of new focal complexes, which were associated with the advance of the cell front. CONCLUSIONS: Rac functions to signal the creation of new substrate contacts at the cell front, which are associated with the induction of ruffling lamellipodia, whereas Rho serves in the maturation of existing contacts, with both contact types requiring contractility for their formation. The transition from a focal complex to a focal contact is associated with a switch to Rho-kinase dependence. Rac and Rho also influence the development of focal contacts and focal complexes, respectively, through mutually antagonistic pathways.  相似文献   

13.
Hsieh HH  Hsu TY  Jiang HS  Wu YC 《PLoS genetics》2012,8(5):e1002663
Clearance of apoptotic cells by engulfment plays an important role in the homeostasis and development of multicellular organisms. Despite the fact that the recognition of apoptotic cells by engulfment receptors is critical in inducing the engulfment process, the molecular mechanisms are still poorly understood. Here, we characterize a novel cell corpse engulfment pathway mediated by the integrin α subunit PAT-2 in Caenorhabditis elegans and show that it specifically functions in muscle-mediated engulfment during embryogenesis. Inactivation of pat-2 results in a defect in apoptotic cell internalization. The PAT-2 extracellular region binds to the surface of apoptotic cells in vivo, and the intracellular region may mediate signaling for engulfment. We identify essential roles of small GTPase CDC-42 and its activator UIG-1, a guanine-nucleotide exchange factor, in PAT-2-mediated cell corpse removal. PAT-2 and CDC-42 both function in muscle cells for apoptotic cell removal and are co-localized in growing muscle pseudopods around apoptotic cells. Our data suggest that PAT-2 functions through UIG-1 for CDC-42 activation, which in turn leads to cytoskeletal rearrangement and apoptotic cell internalization by muscle cells. Moreover, in contrast to PAT-2, the other integrin α subunit INA-1 and the engulfment receptor CED-1, which signal through the conserved signaling molecules CED-5 (DOCK180)/CED-12 (ELMO) or CED-6 (GULP) respectively, preferentially act in epithelial cells to mediate cell corpse removal during mid-embryogenesis. Our results show that different engulfing cells utilize distinct repertoires of receptors for engulfment at the whole organism level.  相似文献   

14.
Clearing of dead cells is a fundamental process to limit tissue damage following brain injury. Engulfment has classically been believed to be performed by professional phagocytes, but recent data show that non-professional phagocytes are highly involved in the removal of cell corpses in various situations. The role of astrocytes in cell clearance following trauma has however not been studied in detail. We have found that astrocytes actively collect and engulf whole dead cells in an in vitro model of brain injury and thereby protect healthy neurons from bystander cell death. Time-lapse experiments showed that migrating neurons that come in contact with free-floating cell corpses induced apoptosis, while neurons that migrate through groups of dead cells, garnered by astrocytes, remain unaffected. Furthermore, apoptotic cells are present within astrocytes in the mouse brain following traumatic brain injury (TBI), indicating a possible role for astrocytes in engulfment of apoptotic cells in vivo. qRT-PCR analysis showed that members of both ced pathways and Megf8 are expressed in the cell culture, indicating their possible involvement in astrocytic engulfment. Moreover, addition of dead cells had a positive effect on the protein expression of MEGF10, an ortholog to CED1, known to initiate phagocytosis by binding to phosphatidylserine. Although cultured astrocytes have an immense capacity for engulfment, seemingly without adverse effects, the ingested material is stored rather than degraded. This finding might explain the multinuclear astrocytes that are found at the lesion site in patients with various brain disorders.  相似文献   

15.
Integrins and their associated proteins are essential components of the cellular machinery that modulates adhesion and migration. In particular, integrin-linked kinase (ILK), which binds to the cytoplasmic tail of β1 integrins, is required for migration in a variety of cell types. We previously identified engulfment and motility 2 (ELMO2) as an ILK-binding protein in epidermal keratinocytes. Recently, we investigated the biological role of the ILK/ELMO2 complexes, and found that they exist in the cytoplasm. ILK/ELMO2 species are recruited by active RhoG to the plasma membrane, where they induce Rac1 activation and formation of lamellipodia at the leading edge of migrating cells. A large number of growth factors and cytokines induce keratinocyte migration. However, we found that formation of RhoG/ELMO2/ILK complexes occurs selectively upon stimulation by epidermal growth factor, but not by transforming growth factor-β1 or keratinocyte growth factor. Herein we discuss the relevance of these complexes to our understanding of the molecular mechanisms involved in cell migration, as well as their potential functions in morphogenesis and tissue regeneration following injury.  相似文献   

16.
Shigella invasion into the colonic epithelium involves many steps including the formation of large membrane protrusions by the epithelial cells that facilitate bacterial engulfment. IpaA, a Shigella protein secreted into target cells upon cell contact induces a loss of actin stress fibers in cells and promotes the reorganization of actin at the site of entry. The mechanism for this is not known but is thought to involve recruitment of the focal adhesion protein vinculin to IpaA. Here we have examined the mechanism for the effects of IpaA on the actin cytoskeleton. We show that IpaA-induced loss of actin stress fibers and cell rounding do not require vinculin expression or an intact vinculin binding site on IpaA. Rather, we find that cells expressing IpaA exhibited elevated Rho activity and increased myosin light chain phosphorylation. In addition, IpaA decreases integrin affinity for extracellular matrix ligands by interfering with talin recruitment to the integrin cytoplasmic tail. The combination of these two effects, namely weakened adhesion and increased contractility, account for the loss of actin stress fibers and cell rounding observed in cells exposed to IpaA.  相似文献   

17.
The acquisition of intracellular organelles, including mitochondria and plastids and a membrane-bounded nucleus, have been postulated to be key events in the development of the eukaryotic from the prokaryotic ancestral cell. The two major hypotheses to account for such acquisitions are: (1) primitive cells originally obtained organelles by engulfing free-living prokaryotes which then entered into symbiotic association (“endosymbiosis”) with them; (2) organelles arose through the engulfment by the primitive cell of part of its own cytoplasm. To some extent, the former hypothesis has received most support, because endosymbiosis is known to occur in extant organisms, whilst the latter hypothesis has received less support, because cytoplasmic engulfment by prokaryotes is not now thought to occur. However, during the process of endospore formation by extant bacteria, the protoplast within the single cell is observed to divide in a unique manner such that the cell in effect engulfs a portion of its own cytoplasm. The process is strikingly similar to the engulfment suggested by the second hypothesis to have initiated the evolution of eukaryotes. The engulfed cytoplasm is bounded by a double membrane within the “mother cell” and contains enzymes, ribosomes and a complete genome. In many respects this parallels the supposed primitive eukaryotic state and, it is argued, confers potential advantages on the cell, particularly through the control that the “mother cell” can exert on the enclosed compartment. It is hypothesized that bacterial endospore formation is therefore one product of evolution from an early engulfment event that led also to the development of complex eukaryotic cells.  相似文献   

18.
A key step in the Bacillus subtilis spore formation pathway is the engulfment of the forespore by the mother cell, a phagocytosis-like process normally accompanied by the loss of peptidoglycan within the sporulation septum. We have reinvestigated the role of SpoIIB in engulfment by using the fluorescent membrane stain FM 4-64 and deconvolution microscopy. We have found that spoIIB mutant sporangia display a transient engulfment defect in which the forespore pushes through the septum and bulges into the mother cell, similar to the situation in spoIID, spoIIM, and spoIIP mutants. However, unlike the sporangia of those three mutants, spoIIB mutant sporangia are able to complete engulfment; indeed, by time-lapse microscopy, sporangia with prominent bulges were found to complete engulfment. Electron micrographs showed that in spoIIB mutant sporangia the dissolution of septal peptidoglycan is delayed and spatially unregulated and that the engulfing membranes migrate around the remaining septal peptidoglycan. These results demonstrate that mother cell membranes will move around septal peptidoglycan that has not been completely degraded and suggest that SpoIIB facilitates the rapid and spatially regulated dissolution of septal peptidoglycan. In keeping with this proposal, a SpoIIB-myc fusion protein localized to the sporulation septum during its biogenesis, discriminating between the site of active septal biogenesis and the unused potential division site within the same cell.  相似文献   

19.
Organization of multiprotein complexes at cell–cell junctions   总被引:1,自引:1,他引:0  
The formation of stable cell-cell contacts is required for the generation of barrier-forming sheets of epithelial and endothelial cells. During various physiological processes like tissue development, wound healing or tumorigenesis, cellular junctions are reorganized to allow the release or the incorporation of individual cells. Cell-cell contact formation is regulated by multiprotein complexes which are localized at specific structures along the lateral cell junctions like the tight junctions and adherens junctions and which are targeted to these site through their association with cell adhesion molecules. Recent evidence indicates that several major protein complexes exist which have distinct functions during junction formation. However, this evidence also indicates that their composition is dynamic and subject to changes depending on the state of junction maturation. Thus, cell-cell contact formation and integrity is regulated by a complex network of protein complexes. Imbalancing this network by oncogenic proteins or pathogens results in barrier breakdown and eventually in cancer. Here, I will review the molecular organization of the major multiprotein complexes at junctions of epithelial cells and discuss their function in cell-cell contact formation and maintenance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号