首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P J Spooner  A Watts 《Biochemistry》1991,30(16):3871-3879
Deuterium NMR has been used to investigate the structure and dynamic state of cytochrome c complexed with bilayers of cardiolipin. Reductive methylation was employed to prepare [N epsilon, N epsilon-C2H3]lysyl cytochrome c, and deuterium exchange provided labeling of backbone sites to give [amide-2H]cytochrome c or more selective labeling of just histidine residues in [epsilon-2H]histidine cytochrome c. Deuterium NMR measurements on [N epsilon, N epsilon-C2H3]lysyl cytochrome c in the solid state showed restricted motions, fairly typical of the behavior of aliphatic side-chain sites in proteins. The [amide-2H]cytochrome c provided "immobile" amide spectra showing that only the most stable backbone sites remained labeled in this derivative. Relaxation measurements on the aqueous solution of [amide-2H]cytochrome c yielded a rotational correlation time of 7.9 ns for the protein, equivalent to a hydrodynamic diameter of 4.0 nm, just 0.6 nm greater than its largest crystallographic dimension. Similar measurements on [epsilon-2H]histidine cytochrome c in solution showed that all labeled histidine residues were also "immobile" compared with the overall reorientational motion of the protein. The interaction with cardiolipin bilayers appeared to create a high degree of mobility for the side-chain sites of [N epsilon, N epsilon-C2H3]lysyl cytochrome c and perturbed backbone structure to instantaneously release all deuterons in [amide-2H]cytochrome c. The [epsilon-2H]histidine cytochrome c derivative, when complexed with cardiolipin, failed to produce any detectable wide-line 2H NMR spectrum, demonstrating that the overall reorientational motion of bound protein was not isotropic on the NMR time scale, i.e., tau c greater than 10(-7)s.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Robinson SA  Rosenzweig SA 《Biochemistry》2004,43(36):11533-11545
Activation of the insulin-like growth factor-1 (IGF)-1 receptor signaling pathways by IGF-1 and IGF-2 results in mitogenic and anabolic effects. The bioavailability of the IGFs is regulated by six soluble binding proteins, the insulin-like growth factor binding proteins (IGFBPs), which bind with approximately 0.1 nM affinity to the IGFs and often serve as endogenous antagonists of IGF action. To identify key domains of IGF-1 involved in the interaction with IGFBP-2 and IGFBP-3, we employed IGF-1 selectively biotinylated on residues Gly 1, Lys 27, Lys 65, and Lys 68. All monobiotinylated species of IGF-1 exhibited high affinity ( approximately 0.1-0.2 nM) for IGFBP-2 and IGFBP-3 in solid-phase-binding assays. However, different labeling intensities were observed in ligand blot analysis of IGFBP-2 and IGFBP-3. The N(epsilon)(Lys65/68)(biotin)-IGF-1 (N(epsilon)(Lys65/68b)-IGF-1) probe exhibited the highest signal intensity, while N(alpha)(Gly1b)-IGF-1 and N(epsilon)(Lys27b)-IGF-1 demonstrated significantly lower signals. When taken together, these results suggest that, once bound to IGFBP-2 or IGFBP-3, the biotin moieties of N(alpha)(Gly1b)-IGF-1 and N(epsilon)(Lys27b)-IGF-1 are inaccessible to NeutrAvidin-peroxidase, the secondary binding component. Ligand blots using IGF-1 derivatized with a long chain form of the N-hydroxysuccinimide biotin (NHS-biotin) to yield N(alpha)(Gly1)(LC-biotin)-IGF-1 and N(epsilon)(Lys27)(LC-biotin)-IGF-1 demonstrated increased signal intensity compared with their NHS-biotin counterparts. In BIAcore analysis, IGFBP-2 and IGFBP-3 bound only to the N(epsilon)(Lys65/68b)-IGF-1-coated flowcell of a biosensor chip, confirming the inaccessibility of Gly 1 and Lys 27 when IGF-1 is bound to IGFBP-2 and IGFBP-3. These data confirm the involvement of the IGFBP-binding domain on IGF-1 in binding to IGFBP-2 and IGFBP-3 and support involvement of the IGF-1R-binding domain in IGFBP binding.  相似文献   

3.
The Escherichia coli biotin holoenzyme synthetase, BirA, catalyzes transfer of biotin to the epsilon amino group of a specific lysine residue of the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase. Sequences of naturally biotinylated substrates are highly conserved across evolutionary boundaries, and cross-species biotinylation has been demonstrated in several systems. To define the minimal substrate requirements in BirA-catalyzed biotinylation, we have measured the kinetics of modification of a 23-residue peptide previously identified by combinatorial methods. Although the sequence of the peptide bears little resemblance to the biotinylated sequence in BCCP, it is enzymatically biotinylated in vivo. Rates of biotin transfer to the 23-residue peptide are similar to those determined for BCCP. To further elucidate the sequence requirements for biotinylation, transient kinetic measurements were performed on a series of amino- and carboxy-terminal truncations of the 23-mer. The results, determined by stopped-flow fluorescence, allowed identification of a 14-residue peptide as the minimum required sequence. Additional support was obtained using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometric analysis of peptides that had been incubated with an excess of biotinyl-5'-adenylate intermediate and catalytic amounts of BirA. Results of these measurements indicate that while kinetically inactive truncations showed no significant shift in molecular mass to the values expected for biotinylated species, kinetically active truncations exhibited 100% biotinylation. The specificity constant (k(cat)/Km) governing BirA-catalyzed biotinylation of the 14-mer minimal substrate is similar to that determined for the natural substrate, BCCP. We conclude that the 14-mer peptide efficiently mimics the biotin acceptor function of the much larger protein domain normally recognized by BirA.  相似文献   

4.
We have examined the role of lysyl residues in the binding of fd gene 5 protein to a nucleic acid polymer. The lysyl residues of the protein were chemically modified to form N epsilon, N epsilon-dimethyllysyl derivatives containing 13C-enriched methyl groups. The 13C NMR spectrum of the modified protein was studied as a function of pH and salt concentration. Differences in the local magnetic environment of the six dimethyllysyl amino groups allowed all six 13C resonances to be resolved for samples in the pH range 8.5-9.0 at less than 50 mM ionic strength. One of the dimethylamino resonances was split at low pH, indicating that the two methyl groups were nonequivalent and that the corresponding lysyl residue (either Lys-3 or Lys-7) might be involved in an ion-pairing interaction. Specific lysyl residues were protected from methylation when the protein was bound to poly(rU). The level of protection of individual lysyl residues was quantitated using peptide mapping and sequencing of gene 5 protein labeled with 3H and 14C radioactive labels. Lysines 24, 46, and 69 showed significant protection (33-52%) from methylation in the protein-polynucleotide complex, suggesting that these 3 residues form part of the nucleic acid-binding site. The alpha-amino group of Met-1 was relatively unreactive in both the free and bound protein, which indicated that the amino terminus is not as exposed in solution as in the crystal structure (Brayer, G.D., and McPherson, A. (1983) J. Mol. Biol. 169, 565-596).  相似文献   

5.
The existence of delta-O-phosphohydroxylysine (HylP) residues in collagen has been reported. However, such phosphorylated residues have not been isolated nor has their location within the protein sequence been identified. To develop the analytical chemistry necessary for the identification of HylP in proteins, a model HylP-containing peptide, Phe-dl-HylP-Gly-Gln-Pro-Ala-Ile-Gly-Phe (I), was synthesized. The peptide was assembled using 9-fluorenylmethyloxycarbonyl (Fmoc)-based solid-phase synthesis; N(alpha)-Fmoc-dl-hydroxy-dl-Lys(N(epsilon)-tert-butyloxycarbonyl)-OH was used to incorporate Hyl, and global phosphitylation/oxidation was used to introduce the phosphate group. The pK(a2) of the phosphate group, as determined using 31P NMR, was 5.6. Phosphoamino acid analysis of I was performed using either dabsyl chloride or phenylisothiocyanate derivatization followed by microbore reversed-phase HPLC separation of N(alpha, epsilon)-didabsyl-HylP or N(alpha, epsilon)-diphenylthiocarbamyl-HylP. HylP was found to be relatively resistant to acid hydrolysis, allowing for its quantitation. Solid-phase Edman degradation of I was used for positive identification of N(alpha)-phenylthiohydantoin-N(epsilon)-phenylthiocarbamyl-HylP. The masses of the phenylthiohydantoin and dabsyl derivatives of HylP were confirmed by electrospray ionization triple-quadrupole (ESI-MS). Peptide I was positively identified as a phosphopeptide by ESI-MS/precursor-ion scanning. Low-energy ESI-MS/MS confirmed the position of HylP within the sequence of I. Phosphorylation of Hyl led to complete resistance of I to lysine-specific endopeptidases.  相似文献   

6.
The structural association of the spinach 17-kDa extrinsic protein of photosystem II with other extrinsic and membrane-bound components of the photosystem was investigated by labeling the 17-kDa extrinsic protein with the amino-group-specific reagent N-hydroxysuccinimidobiotin both on intact photosystem II membranes or as a free protein in solution. After isolation of the biotinylated molecules, the modified 17-kDa proteins were allowed to rebind to photosystem II membranes which were depleted of the 17-kDa component. Differential binding of the protein biotinylated in solution compared to unmodified 17-kDa protein or 17-kDa protein modified on PS II membranes was observed. This indicated possible steric or ionic interference because of biotinylated lysyl residues present on the protein modified in solution. Biotinylated sites on the different modified 17-kDa proteins were identified by trypsin and Staphylococcus V8 protease digestion, followed by affinity chromatography enrichment of the biotinylated peptides and analysis of the peptide fragment mixture by nanospray liquid chromatography-tandem mass spectrometry. Four lysyl residues that were modified when the protein was biotinylated in solution were not biotinylated when the protein was modified on the PS II membrane (90K, 96K, 101K, and 102K). These residues appear to identify a protein domain involved in the interaction of the 17-kDa protein with the other components of the photosystem.  相似文献   

7.
8.
Biotinylated granulocyte/macrophage colony-stimulating factor (GM-CSF) analogues with different linkage chemistries and levels of conjugated biotin were synthesized by reacting recombinant human GM-CSF with sulfosuccinimidyl 6-biotinamidohexanoate or biotin hydrazide/1-[3-(dimethylamino)-propyl]-3-ethylcarbodiimide. These chemically reactive forms of biotin produced derivatives biotinylated at amine or carboxyl groups, respectively. Amine-derivatized analogues of 1.2 and 3.8 mol of biotin/mol of protein (N1-bGM-CSF and N4-bGM-CSF) and a carboxyl-modified analogue of 4.6 mol of biotin/mol of protein (C5-bGM-CSF) were synthesized. These analogues were compared to determine the effect of biotinylation on biological activity and GM-CSF receptor binding characteristics. The biotinylated proteins migrated with the same molecular weight as the native, unmodified protein as determined by SDS-PAGE and could be detected by Western blotting with alkaline phosphatase conjugated streptavidin, thus demonstrating the biotin linkage. All three analogues retained full agonist activity relative to the native protein (EC50 = 10-15 pM) when assayed for the stimulation of human bone marrow progenitor cell growth. Cell surface GM-CSF receptor binding was characterized by the binding of the analogues to human neutrophils, with detection by fluorescein-conjugated avidin and fluorescence-activated cell sorting. The N-bGM-CSFs demonstrated GM-CSF receptor specific binding that was displaceable by excess underivatized protein, with the detected fluorescence signal decreasing with increasing biotin to protein molar ratio. In contrast, C5-bGM-CSF binding above background fluorescence could not be detected using this system, suggesting that this derivative could bind to and activate the receptor, but not simultaneously bind fluorescein-conjugated avidin. The amine-derivatized biotinylated GM-CSF analogues retained biological activity, could specifically label cell surface receptors, and may be useful nonradioactive probes with which to study GM-CSF receptor cytochemistry and receptor modulation by flow cytometry.  相似文献   

9.
A new method is described for the selective 'in synthesis' labeling of peptides by rhodamine or biotin at a single, predetermined epsilon-amino group of a lysine residue. The alpha-amino group and other lysyl residues of the peptide remain unmodified. Peptides are assembled by the Fmoc approach, which requires mild operative conditions for the final deprotection and cleavage, and ensures little damage of the reporter group. The labeling technique involves the previous preparation of a suitable Lysine derivative, easily obtained from commercially-available protected amino acids. This new derivative, where the reporter group (biotin, or rhodamine) acts now as permanent protection of lysyl side chain functions, is then inserted into the synthesis program as a conventional protected amino acid, and linked to the preceding residue by aid of carbodiimide. A simpler, alternative method is also described for the selective 'in synthesis' labeling of peptides with N-terminal lysyl residues. Several applications of labeled peptides are reported.  相似文献   

10.
The synthesis of a biotinylated derivative of dCTP, viz. N4-[(N-biotinyl)-4-amino-butoxyl]-2'-deoxycytidine 5'-triphosphate (I), is described. DNA polymerase I (Klenow fragment) incorporates (I) in DNA chains instead of thymidine, although with a lower efficiency than previously described biotinylated dUTP derivative (II), whereas highly purified DNA polymerase alpha from human placenta uses as substrate derivative (II) but not (I). A DNA fragment bearing biotin residues in one of strands was synthesized with the use of DNA polymerase alpha and dUTP derivative (II); its cloning in the plasmid vector pBR322 revealed that the DNA nucleotide sequence remained intact.  相似文献   

11.
Protein biotinylation and lipoylation are post-translational modifications, in which biotin or lipoic acid is covalently attached to specific proteins containing biotin/lipoyl attachment domains. All the currently reported natural proteins containing biotin/lipoyl attachment domains are multidomain proteins and can only be modified by either biotin or lipoic acid in vivo. We have identified a single domain protein with 73 amino acid residues from Bacillus subtilis strain 168, and it can be both biotinylated and lipoylated in Escherichia coli. The protein is therefore named as biotin/lipoyl attachment protein (BLAP). This is the first report that a natural single domain protein exists as both a biotin and lipoic acid receptor. The solution structure of apo-BLAP showed that it adopts a typical fold of biotin/lipoyl attachment domain. The structure of biotinylated BLAP revealed that the biotin moiety is covalently attached to the side chain of Lys(35), and the bicyclic ring of biotin is folded back and immobilized on the protein surface. The biotin moiety immobilization is mainly due to an interaction between the biotin ureido ring and the indole ring of Trp(12). NMR study also indicated that the lipoyl group of the lipoylated BLAP is also immobilized on the protein surface in a similar fashion as the biotin moiety in the biotinylated protein.  相似文献   

12.
A method for the preparation of a biotinylated resin that can be elongated by standard methods of solid-phase peptide synthesis to give peptides biotinylated at the carboxy terminus is described. This methodology is particularly important for the preparation of biotinylated peptides in which a free amino terminus is required. Coupling of N epsilon-9-fluorenylmethoxycarbonyl-(Fmoc)-N alpha-tert-butyloxycarbonyl(Boc)-L- lysine to p-methylbenzhydrylamine resin, followed by removal of the Fmoc protecting group and reaction with (+)-biotin-4-nitrophenyl ester yielded N alpha-Boc-biocytin-p-methyl-benzhydrylamine resin. The utility of this resin was tested by the synthesis of a biotinylated peptide, Gly-Asn-Ala-Ala-Ala-Ala-Arg-Arg-biocytin-NH2, for use as an in vitro substrate for myristoyl-CoA:protein N-myristoyltransferase (NMT), the enzyme that catalyzes protein N-myristoylation. Analysis of the peptide derivative by HPLC and mass spectrometry revealed a single major product of the expected mass, indicating that the biotin group survived cleavage and deprotection with HF. The biotinylated peptide served as a substrate for NMT, and the resulting myristoylated peptide could be quantitatively recovered by adsorption to immobilized avidin.  相似文献   

13.
It has been demonstrated that caleosin alone is sufficient to stabilize artificial oil bodies. A series of recombinant caleosins, mutated with 3, 5, 8, 11, 13, 15, and 17 extra Lys residues and over‐expressed in Escherichia coli, were used as carrier proteins to render biotin as a hapten on the surface of artificial oil bodies for antibody production. Biotinylation levels of the recombinant caleosins were step‐wisely elevated as the number of extra Lys residues increased, and the biotinylated Lys residues were identified by mass spectrometric analysis. Polyclonal antibodies against biotin were successfully generated in rats injected with artificial oil bodies constituted with each of the biotinylated caleosins. Moreover, those generated via the biotinylated caleosins with eight or more extra Lys residues no longer recognized caleosin. It appears that engineered Lys‐rich caleosins are suitable carrier proteins for the production of antibodies against small molecules. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

14.
The possibility of improving analytical parameters of the immunometric assay with the use of biotinylated antibodies and biotin-streptavidin complexes in comparison with the commonly known approach of direct antibody modification with 125I has been studied. Experiments have been carried out with the use of low-affinity antibodies (Kass approximately 10(9) M-1) to ferritin. The signal-to-noise ratio in the immunometric increases 2.3 times when streptavidin labeled with horse-radish peroxidase is used and 4.3 times when the preformed streptavidin + biotin-peroxidase complex is used in comparison with assay systems based on 125I-labeled antibodies. The improvement of assay parameters of immunochemical systems by means of biotin-streptavidin complexes has been found to permit the use of low-affinity antibodies as assay reagents, thus ensuring analytical parameters attaining or close to those of immunoradiometric assay systems based on high-affinity 125I-labeled antibodies (Kass approximately 10(10) M-1). As shown in this study, the following factors ensure the signal enhancement in biotin-streptoavidin systems: (a) the biotin modification of several lysin residues per IgG molecule, the optimum extent of modification being 3-4 residues per molecule; (b) mild procedure for biotinylation. In contrast to oxidative iodination, the modification of NH2 groups with biotin esters does not significantly affect their antigen-binding properties.  相似文献   

15.
Biotinylated magnetic nanoparticles were constructed by displaying biotin acceptor peptide (BAP) or biotin carboxyl carrier protein (BCCP) on the surface of bacterial magnetic particles (BacMPs) synthesized by Magnetospirillum magneticum AMB-1. BAP-displaying BacMPs (BAP-BacMPs) were extracted from bacterial cells and incubated with biotin and Escherichia coli biotin ligase. Then the in vitro biotinylation of BAP-BacMPs was confirmed using alkaline phosphatase-labeled antibiotin antibody. In contrast, BacMPs displaying the intact 149 residues of AMB-1 BCCP (BCCP-BacMPs) and displaying the COOH-terminal 78 residues of BCCP (BCCP78-BacMPs) were biotinylated in AMB-1 cells. The in vivo biotinylation of BCCP-BacMPs and BCCP78-BacMPs was thought to be performed by endogenous AMB-1 biotin ligase. Streptavidin was introduced onto biotinylated BacMPs by simple mixing. In an analysis using tetramethyl rhodamine isocyanate-labeled streptavidin, approximately 15 streptavidin molecules were shown to be immobilized on a single BCCP-BacMP. Furthermore, gold nanoparticle-BacMP composites were constructed via the biotin-streptavidin interaction. The conjugation system developed in this work provides a simple, low-cost method for producing biotin- or streptavidin-labeled magnetic nanoparticles. Various functional materials can be site selectively immobilized on these specially designed BacMPs. By combining the site-selective biotinylation technology and the protein display technology, more innovative and attractive magnetic nanomaterials can be constructed.  相似文献   

16.
A streptavidin/biotin-based immunoaffinity system was optimized to isolate herpesvirus (human cytomegalovirus) immediate early proteins or late glycoproteins from crude infected cell lysates. Biotinylation of the primary antibody by biotin substitution of epsilon amino groups was superior to biotin substitution of sugar residues. Biotinylation of the primary antibody was superior to that of a secondary antibody. A biotin substitution of approximately 8 M biotin/M antibody allowed for maximal recovery of viral antigens. The streptavidin/biotin-based immunoaffinity system can allow for relatively pure preparations of viral antigens that may be used for functional, immunological, or structural studies.  相似文献   

17.
D G Sawutz  J Yanni  M Kelley  H Wolfe 《Peptides》1991,12(5):1019-1024
We report the synthesis and molecular characterization of a biotinylated analog of kallidin, [Lys]bradykinin. Bradykinin was prepared by solid phase peptide synthesis. Before cleavage from the resin, a biotin moiety was coupled to the epsilon amino group of a lysine in the zeroth position of the bradykinin peptide. An omega-amino caproic acid spacer was incorporated between the biotin group and the N-terminal lysine. The biotinylated peptide was deprotected, cleaved from the resin and purified by RP-HPLC. The identity of this analog was confirmed by amino acid analysis and FAB-mass spectrometry. Biotinyl [Lys]bradykinin (BLBK, mol, wt. = 1528) inhibited [3H]-bradykinin binding to guinea pig ileum homogenates dose dependently, with an IC50 of 28.9 +/- 6 nM. The IC50 for [Lys]bradykinin was approximately 10-fold lower, 3.2 +/- 0.6 nM. BLBK induced contractility in an isolated guinea pig smooth muscle preparation with an EC50 of 129 +/- 14 nM; the corresponding value for [Lys]bradykinin was 29 +/- 8 nM. These data are consistent with the difference in binding potency observed for BLBK compared to [Lys]bradykinin. In an ELISA assay using BLBK and affinity-purified rabbit anti-bradykinin antibody, BLBK bound to anti-bradykinin antibody with an EC50 = 1.21 +/- 0.54 nM. Rank order potencies for several bradykinin peptide analogs suggest that the epitope on bradykinin recognized by the antibody is likely to be at the carboxy terminus of the peptide.  相似文献   

18.
Fourier-transform infrared studies have been carried out to investigate the secondary structure and thermal stability of hen egg white avidin and its complexes with biotin and with a biotinylated lipid derivative, N-biotinyl dimyristoyl phosphatidylethanolamine (DMBPE) in aqueous dispersion. Analysis of the amide I stretching band of avidin yielded a secondary structural content composed of approximately 66% beta-sheet and extended structures, with the remainder being attributed to disordered structure and beta-turns. Binding of biotin or specific association with the biotinylated lipid DMBPE did not result in any appreciable changes in the secondary structure content of the protein, but a change in hydrogen bond stability of the beta-sheet or extended chain regions was indicated. The latter effect was enhanced by surface interactions in the case of the biotin-lipid assemblies, as was demonstrated by electrostatic binding to a nonspecific negatively charged lipid. Difference spectra of the bound biotin implicated a direct involvement of the ureido moiety in the ligand interaction that was consistent with hydrogen bonding to amino acid residues in the avidin protein. It was found that complexation with avidin leads to a decrease in bond length of the biotin ureido carbonyl group that is consistent with a reduction of sp3 character of the C-O bond when it is hydrogen bonded to the protein. Studies of the temperature dependence of the spectra revealed that for avidin alone the secondary structure was unaltered up to approximately 75 degrees C, above which the protein undergoes a highly cooperative transition to an unfolded state with concomitant loss of ordered secondary structure. The complexes of avidin with both biotin and membrane-bound DMBPE lipid assemblies display a large increase in thermal stability compared with the native protein.  相似文献   

19.
Biotinylation is useful for the detection, purification and immobilization of proteins. It is performed by chemical modification, although position-specific and quantitative biotinylation is rarely achieved. We developed a position-specific biotinylation method using biotinylated non-natural amino acids. We showed that biotinylated p-aminophenylalanine derivatives were incorporated into a protein more efficiently than biotinylated lysine derivatives in a cell-free translation system. In addition, the biotinylated p-aminophenylalanines overcame the serious position-dependency observed for biotinylated lysines. The present method will be useful for detection and purification of proteins along with comprehensive exploration of surface-exposed residues and oriented immobilization of proteins.  相似文献   

20.
Biotinylation is widely used in DNA, RNA and protein probing assays as this molecule has generally no impact on the biological activity of its substrate. During the streptavidin‐based detection of glycoproteins in Lactobacillus rhamnosus GG with biotinylated lectin probes, a strong positive band of approximately 125 kDa was observed, present in different cellular fractions. This potential glycoprotein reacted heavily with concanavalin A (ConA), a lectin that specifically binds glucose and mannose residues. Surprisingly, this protein of 125 kDa could not be purified using a ConA affinity column. Edman degradation of the protein, isolated via cation and anion exchange chromatography, lead to the identification of the band as pyruvate carboxylase, an enzyme of 125 kDa that binds biotin as a cofactor. Detection using only the streptavidin conjugate resulted in more false positive signals of proteins, also in extracellular fractions, indicating biotin‐associated proteins. Indeed, biotin is a known cofactor of numerous carboxylases. The potential occurence of false positive bands with biotinylated protein probes should thus be considered when using streptavidin‐based detection, e.g. by developing a blot using only the streptavidin conjugate. To circumvent these false positives, alternative approaches like detection based on digoxigenin labelling can also be used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号