首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
DNA transfection analyses (tumorigenicity assay) and hybridization to mutation specific oligonucleotide probes established point mutations in codon 61 of both, N-ras and Ki-ras genes in fresh leukemic cells of an AML patient. Concurrent activation of N-ras and Ki-ras sequences by point mutations in codons 12 were demonstrated for AML cell line Rc2a. Moreover, using a rapid and sensitive dot-blot screening procedure based on the combination of in vitro amplification of ras specific sequences and oligonucleotide hybridization we could show that ras gene activation was not present in primary leukemic cells of the patient this cell line had been derived from, but rather occurred during later passages of Rc2a.  相似文献   

2.
Short oligonucleotide mass analysis (SOMA) is a technique by which small sequences of mutated and wild-type DNA, produced by PCR amplification and restriction digestion, are characterized by HPLC-electrospray ionization tandem mass spectrometry. We have adapted the method to specifically detect two common point mutations at codon 12 of the c-K-ras gene. Mutations in DNA from 121 colon tumor samples were identified by SOMA and validated by comparison with sequencing. SOMA correctly identified 26 samples containing the 12GAT mutation and four samples containing the 12AGT mutation. Sequencing did not reveal mutant DNA in three samples out of the 26 samples shown by SOMA to contain the 12GAT mutation. In these three samples, the presence of mutant DNA was confirmed by SOMA analysis after selective PCR amplification in the presence of BstN1 restriction enzyme. Additional mutations in codons 12 and 13 were revealed by sequencing in 24 additional samples, and their presence did not interfere with the correct identification of G to A or G to T mutations in codon 12. These results provide the basis for a sensitive and specific method to detect c-K-ras codon 12-mutated DNA at levels below 10–12% of wild-type DNA.  相似文献   

3.
Previously we reported that papillary thyroid carcinomas were predominantly induced at high frequency by a low dose of N -methyl- N' -nitro- N -nitrosoguanidine (MNNG) in the hermaphroditic fish Rivulus marmoratus . In the current study, polymerase chain reaction (PCR) amplification and direct sequencing were used to examine the point mutations of Ha- and Ki- ras genes, which may be associated with papillary thyroid tumour development in rivulus. Thirty-three tumour samples were tested, however, no mutations were detected in rivulus Ha- and Ki- ras genes. In human and rodent models, it has been reported that ras gene mutations in papillary thyroid tumours occurred preferentially in the N- ras gene in general, while follicular tumours contained activated Ha- or Ki- ras gene mutations. This may explain why papillary thyroid carcinomas in rivulus were not mutated at codon 12, 13 or 61 of exon 1 or exon 2 of the rivulus Ha- or Ki- ras gene. These results imply that another oncogene, such as the N- ras gene and others, may be preferentially activated in rivulus papillary thyroid carcinomas, and also give valuable information for comparative studies of papillary thyroid carcinogenesis.  相似文献   

4.
A simple approach is described to synthesize and clone an inexhaustible supply of any homozygous and/or heterozygous controls diluted with yeast genomic DNA to mimic human genome equivalents for use throughout the entire multiplex mutation assay. As a proof of principle, the 25 cystic fibrosis mutation panel selected by the American College of Medical Genetics and four additional mutant sequences were prepared as a single control mixture. The 29 CFTR mutations were incorporated into 17 gene fragments by PCR amplification of targeted sequences using mutagenic primers on normal human genomic DNA template. Flanking primers selected to bind beyond all published PCR primer sites amplified controls for most assay platforms. The 17 synthesized 433-933-bp CFTR fragments each with one to four homozygous mutant sequences were cloned into nine plasmid vectors at the multiple cloning site and bidirectionally sequenced. Miniplasmid preps from these nine clones were mixed and diluted with genomic yeast DNA to mimic the final nucleotide molar ratio of two CFTR genes in 6 x 10(9) bp total human genomic DNA. This mixture was added to control PCR reactions prior to amplification as the only positive control sample. In this fashion >200 multiplex clinical PCR analyses of >4,000 clinical patient samples have been controlled simultaneously for PCR amplification and substrate specificity for 29 tested mutations without cross contamination. This clinically validated multiplex cystic fibrosis control can be modified readily for different test formats and provides a robust means to control for all mutations instead of rotating human genomic controls each with a fraction of the mutations. This approach allows scores of additional mutation controls from any gene loci to be added to the same mixture annually.  相似文献   

5.
Somatic mutations in the KRAS gene are important markers of some types of tumors, for example, pancreatic cancer, and may be useful in early diagnostics. A biochip has been developed which allows determining most frequent mutations in 12, 13 and 61 codons of the KRAS gene. To increase the sensitivity of the method and to make possible the analysis of minor fractions of tumor cells in clinical samples the method of blocking a wild type sequence PCR amplification by LNA-oligonucleotides has been used. The product of LNA-clamp PCR was further hybridized with oligonucleotide probes, immobilized on biochip. Biochip was tested with 42 clinical DNA samples from patients with pancreatic cancer, mostly ductal adenocarcinomas. As reference methods, the RFLP analysis and sequencing were used. The developed approach allows detecting somatic mutations in the KRAS gene if the portion of tumor cells with mutation is at least 1% of whole cell population.  相似文献   

6.
Duchenne and Becker muscular dystrophies (DMD and BMD) are X-linked neuromuscular diseases characterized by progressive muscular weakness and degeneration of skeletal muscles. Approximately two-thirds of the patients have large deletions or duplications in the dystrophin gene and the remaining one-third have point mutations. This study was performed to evaluate point mutations in Iranian DMD/BMD male patients. A total of 29 DNA samples from patients who did not show any large deletion/duplication mutations following multiplex polymerase chain reaction (PCR) and multiplex ligation-dependent probe amplification (MLPA) screening were sequenced for detection of point mutations in exons 50–79. Also exon 44 was sequenced in one sample in which a false positive deletion was detected by MLPA method. Cycle sequencing revealed four nonsense, one frameshift and two splice site mutations as well as two missense variants.  相似文献   

7.
8.
Point mutations of ras oncogenes are an early event in thyroid tumorigenesis   总被引:13,自引:0,他引:13  
Identifying the nature of the genetic mutations in thyroid neoplasms and their prevalence in the various tumor phenotypes is critical to understanding their pathogenesis. Mutational activation of ras oncogenes in human tumors occurs predominantly through point mutations in two functional regions of the molecules, codons 12, 13 (GTP-binding domain) or codon 61 (GTPase domain). We examined the prevalence of point mutations in codons 12, 13, and 61 of the oncogenes K-ras, N-ras, and H-ras in benign and malignant human thyroid tumors by hybridization of PCR-amplified tumor DNA with synthetic oligodeoxynucleotide probes. None of the eight normal thyroid tissues harbored point mutations. Four of nineteen nodules from multinodular goiters (21%), 6/24 microfollicular adenomas (25%), 3/14 papillary carcinomas (21%), and 0/3 follicular carcinomas contained ras point mutations. The predominant mutation was a valine for glycine substitution in codon 12 of H-ras. None of the multinodular goiter tumors known to be polyclonal (and thus due to hyperplasia) had point mutations, whereas one of the two monoclonal adenomas arising in nodular glands contained in H-ras codon 12 valine substitution, which was confirmed by sequencing the tumor DNA. These data show that ras activation is about equally prevalent in benign and malignant thyroid neoplasms, and thus may be an early event in the tumorigenic process.  相似文献   

9.
Somatic mutations in the KRAS gene are important markers of some types of tumors, for example, pancreatic cancer, and may be useful in early diagnostics. A biochip has been developed which allows deter-mining most frequent mutations in 12, 13, and 61 codons of the KRAS gene. To increase the sensitivity of the method and to enable the analysis of minor fractions of tumor cells in clinical samples, the method of blocking wild type sequence PCR amplification by LNA-oligonucleotides has been used. The product of LNA-clamp PCR was further hybridized with oligonucleotide probes, immobilized on the biochip. The biochip was tested with 42 clinical DNA samples from patients with pancreatic cancer, mostly duct adenocarcinomas. As reference methods, RFLP analysis and sequencing were used. The developed approach allows detecting somatic mutations in the KRAS gene if the portion of tumor cells with mutation is at least 1% of the whole cell population.  相似文献   

10.
Activation of a human c-K-ras oncogene   总被引:9,自引:3,他引:6       下载免费PDF全文
The human lung carcinomas PR310 and PR371 contain activated c-K-ras oncogenes. The oncogene of PR371 was found to present a mutation at codon 12 of the first coding exon which substitutes cysteine for glycine in the encoded p21 protein. We report here that the transforming gene of PR310 tumor contains a mutation in the second coding exon. An A----T transversion at codon 61 results in the incorporation of histidine instead of glutamine in the c-K-ras gene product. By constructing c-K-ras/c-H-ras chimeric genes we show that this point mutation is sufficient to confer transforming potential to ras genes, and that a hybrid ras gene coding for a protein mutant at both codons 12 and 61 is also capable of transforming NIH3T3 cells. The relative transforming potency of p21 proteins encoded by ras genes mutant at codons 12, 61 or both has been analyzed. Our studies also show that the coding exons of ras genes, including the fourth, can be interchanged and the chimeric p21 ras proteins retain their oncogenic ability in normal rodent established cell lines.  相似文献   

11.
Cancers arise from the accumulation of multiple mutations in genes regulating cellular growth and differentiation. Identification of such mutations in numerous genes represents a significant challenge in genetic analysis, particularly when the majority of DNA in a tumor sample is from wild-type stroma. To overcome these difficulties, we have developed a new type of DNA microchip that combines polymerase chain reaction/ligase detection reaction (PCR/LDR) with "zip-code" hybridization. Suitably designed allele-specific LDR primers become covalently ligated to adjacent fluorescently labeled primers if and only if a mutation is present. The allele-specific LDR primers contain on their 5'-ends "zip-code complements" that are used to direct LDR products to specific zip-code addresses attached covalently to a three-dimensional gel-matrix array. Since zip-codes have no homology to either the target sequence or to other sequences in the genome, false signals due to mismatch hybridizations are not detected. The zip-code sequences remain constant and their complements can be appended to any set of LDR primers, making our zip-code arrays universal. Using the K- ras gene as a model system, multiplex PCR/LDR followed by hybridization to prototype 3x3 zip-code arrays correctly identified all mutations in tumor and cell line DNA. Mutations present at less than one per cent of the wild-type DNA level could be distinguished. Universal arrays may be used to rapidly detect low abundance mutations in any gene of interest.  相似文献   

12.
To explore the characteristics of DNA mismatch repair gene mutations in Chinese patients with hereditary non-polyposis colorectal cancer (HNPCC) or Lynch syndrome, the MLH1 and MSH2 genes from probands of 76 HNPCC families were sequenced. By doing so, two frame-shift mutations, three splice-site mutations and fourteen missense mutations (thirteen missense mutations and one nonsense mutation) were identified in the MLH1 gene. In addition, one splice-site mutation and six missense mutations were detected in the MSH2 gene. None of these mutations were detected in 100 matched healthy controls. The remaining mutation-negative cases were subjected to large fragment deletion analysis using multiplex ligation-dependent probe amplification (MLPA). By doing so, five large fragment deletions were detected in the MSH2 gene. No large fragment deletions were detected in the MLH1 gene. We conclude that the MLH1 and MSH2 genes in Chinese HNPCC families exhibit broad mutation spectra.  相似文献   

13.
Gene targeting in mouse embryonic stem (ES) cells generally includes the analysis of numerous colonies to identify a few with mutations resulting from homologous recombination with a targeting vector. Thus, simple and efficient screening methods are needed to identify targeted clones. Optimal screening approaches require probes from outside of the region included in the targeting vector to avoid detection of the more common random insertions. However, the use of large genomic fragments in targeting vectors can limit the availability of cloned DNA, thus necessitating a strategy to obtain unique flanking sequences. We describe a rapid method to identify sequences adjacent to cloned DNA using long-range polymerase chain reaction (PCR) amplification from a genomic DNA library, followed by direct nucleotide sequencing of the amplified fragment. We have used this technique in two independent gene targeting experiments to obtain genomic DNA sequences flanking the mouse cholecystokinin (CCK) and gastrin genes. The sequences were then used to design primers to characterize ES cell lines with CCK or gastrin targeted gene mutations, employing a second long-range PCR approach. Our results show that these two long-range PCR methods are generally useful to rapidly and accurately characterize allele structures in ES cells  相似文献   

14.
Cloning of genomic and cDNA sequences of mammalian genes has made it possible to analyze at the molecular level mutations induced by radiation and chemical mutagens. The X-linked HPRT gene is very suitable for these investigations because in addition to the availability of cell culture systems, HPRT mutants can also be obtained directly from the lymphocytes of mouse and man. Recently a new technique has been introduced by Saiki and co-workers which allows the cloning and sequencing of small specific DNA segments from total genomic DNA after in vitro amplification of those segments up to 200,000-fold (Saiki et al., 1985). We have adapted this so-called polymerase chain reaction (PCR) procedure in such a way that the entire mouse HPRT-coding region could be amplified, cloned and sequenced. Instead of genomic DNA, we have used RNA as template in the PCR reactions. This allows us to detect point mutations in HPRT exon sequences in a very efficient way, since the DNA sequence of all 9 exons, which are scattered over 34 kb of DNA, can be obtained from only one amplification experiment. We studied the nature of 3 N-ethyl-N-nitrosourea (ENU)-induced HPRT mutants from cultured mouse lymphoma cells. One contains an A:T----G:C transition, the second an A:T----T:A transversion, whereas the third mutant is the result of abnormal splicing events, probably due to a mutation in the 3' splice site of the first intron.  相似文献   

15.
The activation of ras genes in naturally occurring tumors has, thus far, been found to be due to mutations in codon 12 or 61 resulting in single amino acid substitutions. We have used highly labeled synthetic oligonucleotides to detect mutations in these codons and to determine the exact position of the mutation. Using this approach we have found three different mutations in codon 61 of the N-ras gene of various human tumor cell lines. In the fibrosarcoma line HT1080 the first nucleotide of the codon is mutated; in the promyelocytic line HL60 the second and in the rhabdomyosarcoma line RD301 the third nucleotide. For RD301 this implies that the normal glutamine residue at position 61 is replaced by histidine. In addition to the mutated N-ras gene the three cell lines have a normal N-ras gene which is indicative of the dominant character of the mutations.  相似文献   

16.
Summary About one third of Duchenne muscular dystrophy (DMD) patients have no gross DNA rearrangements in the dystrophin gene detectable by Southern blot analysis or multiplex exon amplification. Presumably, in these cases, the deficiency is caused by minor structural lesions of the dystrophin gene. However, to date, only a single human DMD case has been described where a point mutation, producing a stop codon, accounts for the DMD phenotype. To screen for microheterogeneities in the dystrophin gene, we applied analysis by chemical mismatch cleavage to thirteen exons amplified in multiplex sets by the polymerase chain reaction. This analysis covers approximately 20% of the dystrophin-coding sequence. Sixty DMD patients without detectable deletions or duplications were investigated, leading to the identification of two point mutations and four polymorphisms with a frequency higher than 5%. Both point mutations are frameshift mutations in exons 12 and 48, respectively, and are closely followed by stop codons, thus explaining the functional deficiency of the dystrophin gene products in both patients.  相似文献   

17.
We describe here an improved procedure for polymerase chain reaction (PCR)-based single strand conformation polymorphism (SSCP) for rapid mutational detection. To circumvent the restriction of having to analyze relatively short PCR fragments, restriction endonucleases were used to cleave a longer PCR product and the mixture of fragments was analyzed directly in SSCP gel electrophoresis. This multiple restriction fragment (MRF)-SSCP protocol was demonstrated by the detection of a 4-bp deletion in codons 41-42 and a point mutation in the IVS-2 sequence of the human beta-globin gene. The MRF-SSCP or the standard SSCP protocol was then combined with the linear amplification DNA sequencing (LADS) procedure for direct analysis of the PCR products without further purification for an exact characterization of the mutations detected. In the LADS analysis, homo- or heterozygosity of a mutation was easily distinguished by the appearance of a single- or double-lane band in the sequencing gel. The choice of isotope used and different labeling methods were compared and were found, in some cases, to produce SSCP patterns of different complexities. The combined MRF-SSCP/LADS protocol permits rapid mutational analysis of a large number of clinical samples using only very small amounts of materials and can easily be adopted for nonisotopic clinical applications.  相似文献   

18.
We cloned ras-related sequences from goldfish genomic libraries constructed as recombinants using the lambda phage. Restriction enzyme mapping of the clones obtained revealed three kinds of ras-related sequences among approximately 350,000 genomic clones. One of these clones was partially sequenced. Comparison with the nucleotide sequences of mammalian ras genes showed that the determined sequences covered the predicted amino acid coding regions and parts of the intervening regions. The predicted amino acid sequences of the cloned ras-related goldfish gene suggested that the coding region is localized separately in DNA, and that its exon-intron boundaries are exactly the same as those of corresponding mammalian genes. The nucleotide and amino acid sequences of the goldfish ras-related gene may have extensive homologies to mammalian p 21 protein. Among the three mammalian ras proteins, the predicted amino acid sequence of the sequenced ras-related goldfish clone is most closely homologous (96%) to the Kirsten ras protein. Differences in the predicted amino acid sequence were greatest in the sequence predicted from the fourth exon; fewer differences were found in the sequence from the third exon, and only slight or no differences were found in the sequence predicted for the first and second exons. The 12th and 61st amino acids from the N-terminal of the protein, which are thought to be critical positions for GTP binding and catalysis, are both conserved in the goldfish protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The RFLP/PCR approach (restriction fragment length polymorphism/polymerase chain reaction) to genotypic mutation analysis described here measures mutations in restriction recognition sequences. Wild-type DNA is restricted before the resistant, mutated sequences are amplified by PCR and cloned. We tested the capacity of this experimental design to isolate a few copies of a mutated sequence of the human c-Ha-ras1 gene from a large excess of wild-type DNA. For this purpose we constructed a 272 bp fragment with 2 mutations in the PvuII recognition sequence 1727-1732 and studied the rescue by RFLP/PCR of a few copies of this 'PvuII mutant standard'. Following amplification with Taq-polymerase and cloning into lambda gt10, plaques containing wild-type sequence, PvuII mutant standard or Taq-polymerase induced bp changes were quantitated by hybridization with specific oligonucleotide probes. Our results indicate that 10 PvuII mutant standard copies can be rescued from 10(8) to 10(9) wild-type sequences. Taq polymerase errors originating from unrestricted, residual wild-type DNA were sequence dependent and consisted mostly of transversions originating at G.C bp. In contrast to a doubly mutated 'standard' the capacity to rescue single bp mutations by RFLP/PCR is limited by Taq-polymerase errors. Therefore, we assessed the capacity of our protocol to isolate a G to T transversion mutation at base pair 1698 of the MspI-site 1695-1698 of the c-Ha-ras1 gene from excess wild-type ras1 DNA. We found that 100 copies of the mutated ras1 fragment could be readily rescued from 10(8) copies of wild-type DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号