首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cDNA library in pBR322 was prepared with cytoplasmic poly(A)+RNA from mouse liver cells. From 1 to 1.5% of clones hybridized to either B1 or B2 ubiquitous repetitive sequences. Several clones hybridizing to a B2 repeat were partially sequenced. The full-length B2 sequence was found at the 3'-end of abundant 20S poly(A)+RNA (designated as B2+mRNAx) within the non-coding part of it. B2+mRNAx is concentrated in mouse liver polysomes and absent from cytoplasm of Ehrlich carcinoma cells. The B2 sequence seems to be located at the 3'-end of some other mRNAs as well. To determine the orientation of the B2 sequence in different RNAs, its two strands were labeled, electrophoretically separated, and used for hybridization with Northern blotts containing nuclear, cytoplasmic and polysomal RNAs. In nuclear RNA, the B2 sequence is present in both orientations; in polysomal and cytoplasmic poly(A)+RNAs, only one ("canonical") strand of it can be detected. Low molecular weight poly(A)+B2+RNA [1] also contains the same strand of the B2 element. The conclusion has been drawn that only one its strand can survive the processing. This strand contains promoter-like sequences and AATAAA blocks. The latter can be used in some cases by the cell as mRNA polyadenylation signals.  相似文献   

2.
3.
4.
5.
6.
The cytoplasmic poly(A)+RNAs containing ubiquitous B1 and B2 repeats of the mouse genome in normal tissues and tumors have been studied. Only one strand of the repeats is represented in cytoplasmic RNA in all the cases. Some tumor cells were found to be enriched in 1.4 kb B1+mRNA, 1.6 kb B2+mRNA and small (0.2-04 kb) B1+ and B2+ poly(A)+RNAs. On the other hand, mouse liver and kidney contained high amounts of 2 kb B2+mRNA. Its content increased noticeably in the regenerating liver, but in hepatoma it dropped to a zero level. Thus, the switching on (or off) of B1- and B2-containing mRNAs occurred noncoordinately. At the same time, the activation of the synthesis of small B2+RNA and small B1+RNA was simultaneous.  相似文献   

7.
Treatment of a nontumorigenic clone of AKR mouse embryo cells in culture with a variety of polycyclic aromatic hydrocarbons has resulted in the development of derivative clones which are highly tumorigenic and exhibit other characteristics of the transformed phenotype. A 3-methylcholanthrene-transformed derivative clone (clone MCA) has been compared to the parent clone (clone 2B) with respect to the abundance and diversity of polysomal poly(A)-containing mRNA sequences. Hybridization kinetic experiments show that the poly(A)-containing sequences of both clones are organized into indistinguishable abundance classes, and that the vast majority of the sequences are common to both the parent and derivative clones. The levels of two specific messenger RNAs (α- and β-globin mRNA) which characterize highly differentiated mouse erythroid cells were much less than 1 molecule per cell in either cell type. Titration of a balanced complementary DNA probe to AKR murine leukemia virus (AKR-MuLV) 70S RNA with purified polysomal poly(A)-containing RNA from both parent and derivative clones shows that approximately 5000 and 1200 viral 35S RNA equivalents are present in the cytoplasm of growing and resting clone MCA cells, respectively. Rapidly growing clone 2B cells contain less than about 30 viral 35S RNA equivalents per cell. Viral specific sequences therefore correspond to members of the high abundance class of poly(A)-containing RNA sequences in clone MCA cells and to the low abundance class of sequences in clone 2B cells. Within the limits of detection, this large increase in abundance is characteristic only of viral specific RNA sequences.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
Widespread RNA segregation in a spiralian embryo   总被引:1,自引:0,他引:1  
Asymmetric cell divisions are a crucial mode of cell fate specification in multicellular organisms, but their relative contribution to early embryonic patterning varies among taxa. In the embryo of the mollusc Ilyanassa, most of the early cell divisions are overtly asymmetric. During Ilyanassa early cleavage, mRNAs for several conserved developmental patterning genes localize to interphase centrosomes, and then during division they move to a portion of the cortex that will be inherited by one daughter cell. Here we report an unbiased survey of RNA localization in the Ilyanassa embryo, and examine the overall patterns of centrosomal localization during early development. We find that 3-4% of RNAs are specifically localized to centrosomes during early development, and the remainder are either ubiquitously distributed throughout the cytoplasm or weakly enriched on centrosomes compared with levels in the cytoplasm. We observe centrosomal localization of RNAs in all cells from zygote through the fifth cleavage cycle, and asymmetric RNA segregation in all divisions after the four-cell stage. Remarkably, each specifically localized message is found on centrosomes in a unique subset of cells during early cleavages, and most are found in unique sets of cells at the 24-cell stage. Several specifically localized RNAs are homologous to developmental regulatory proteins in other embryos. These results demonstrate that the mechanisms of localization and segregation are extraordinarily intricate in this system, and suggest that these events are involved in cell fate specification across all lineages in the early Ilyanassa embryo. We propose that greater reliance on segregation of determinants in early cleavage increases constraint on cleavage patterns in molluscs and other spiralian groups.  相似文献   

16.
The temporal expression of the genes for the excellular matrix proteins entactin and the A, B1, and B2 chains of laminin was examined in the eye of the developing mouse embryo by in situ hybridization of their messenger RNAs. Entactin messenger RNA was found in abundance in specific cells. In the 25 somite embryo entactin message was synthesized by mesenchymal cells and, at later stages, by hyalocytes and lens cells in addition. The message was not detectable in corneal epithelium at embryonic stages E15 and E18.5 and at birth but was present in adjacent stromal cells. At the 28 and 38 somite stages, before pigment granules interfered with the detection of silver grains, no entactin message was detected in pigmented epithelial cells, in contrast to the messages for laminin B1 and B2. Entactin was not found in the neural epithelium at any time during development. The distribution of the laminin B1, B2 and A chain messenger RNAs was distinctly different from that of entactin. In particular, during the early stages of development B1 and B2 messages were synthesized by ectodermal, lens, corneal, pigment epithelial and hyaloid cells. In the older embryos cells in the ganglion layer of the retina synthesized B1 and B2 messages but undetectable amounts of entactin or the A chain messages. In general the A chain message was in lower abundance throughout development. The distribution of laminin and entactin messages suggested that the extracellular matrices, which contained both proteins, can be derived either from a single cell type or from the contributions of multiple cell types. The data demonstrate the complexity of extracellular matrix synthesis and assembly in the diverse structures of the developing eye where the temporal expression of specific molecules are tailored to the specific developmental requirements of particular structures.  相似文献   

17.
The complementary strands of fragments of 32P-labelled adenovirus 2 DNA generated by cleavage with restriction endonucleases EcoRI or Hpa1 were separated by electrophoresis. Saturation hybridization reactions were performed between these fragment strands and unlabelled RNA extracted from the cytoplasm of adenovirus 2-transformed rat embryo cells or from human cells early after adenovirus 2 infection. The fraction of each fragment strand complementary to RNA from these sources was measured by chromatography on hydroxylapatite. Maps of the viral DNA sequences complementary to messenger RNA in different lines of transformed cells and early during lytic infection of human cells were constructed.Five lines of adenovirus 2-transformed cells were examined. All contained the same RNA sequences, complementary to about 10% of the light strand of EcoRI fragment A. DNA sequences coding for this RNA were more precisely located using Hpa1 fragments E and C and mapped at the left-hand end of the genome. Thus any viral function expressed in all adenovirus 2-transformed cells, tumour antigen, for example, must be coded by this region of the viral genome. Two lines, F17 and F18, express only these sequences; two others, 8617 and REM, also contain mRNA complementary to about 7% of the heavy strand of the right-hand end of adenovirus 2 DNA; a fifth line, T2C4, contains these and many additional viral RNA sequences in its cytoplasm.The viral RNA sequences found in all lines of transformed cells are also present in the cytoplasm of human cells during the early phase of a lytic adenovirus infection. The additional cytoplasmic sequences in the 8617 and REM cell lines also correspond to “early” RNA sequences.  相似文献   

18.
The flower develops in March and blossoms in early May in Nanjing. The cytokinesis of microsporocytes is simultaneous and most tetrads are tetrahedral. The tapetum is secretory and the nuclei become polyploid at last. The style is solid and most ovaries are unilocular, rarely bilocular. The ovule is pendulous, anatropous and unitegmic. The nucellus is pseudocrassinucellate. An obturator formed by transmitting tissue covers the micropyle. The raphe vascular strand extends into the integument when it reaches the chalaza and on a whole keeps a “U” shape. The endothelium cell is uninucleate. In most cases no nucellar cap is formed. No hypostase is found below the embryo sac. The archesporium is one-celled. The embryo sac development conforms to the Polygonum or Allium types. The degeneration of the megaspores in the linear tetrad usually occurs from the chalazal toward the micropylar end. Two synergids persist during fertilization. Three antipodal cells are uninucleate and ephemeral. Two polar nuclei fuse at the time of fertilization. The fertilization type accords with porogamy. The syngamy is premitotic. The development of endosperm is cellular. The initial four successive divisions of the primary endosperm cell are transverse-verticaltransverse-transverse subsequently, giving rise to sixteen cells of the early endosperm. The mature embryo is straight and nearly as long as the endospermous seed. The cotyledons are more or less cordate at base. The seedoat is thin and composed of 5-11 layers of compressed cells. Neither embryo nor endosperm contain the alkaloid camptothecine. The major similarities of Nyssa sinensis to the American nyssas in embryology, which may be a counted as the generic features, are the polyploid tapetum cells, the unitegmic ovule with U-shaped vascular strand, the direct enlargement of the archesporial cell to produce the megasporocyte, the pseudocrassinucellus, the usual absence of the nucellar cap, the Polygonum or Allium type of the embryo sac development, the first degeneration of the metachalazal megaspore, the ephemeral antipodal cells, a single nucleolus in the nucleus ofthe primary endosperm cell, the more or less cordate base of the cotyledons.  相似文献   

19.
20.
Megasporogenesis and embryo sac development in Stellaria media were investigated using cytochemical methods for the demonstration of nucleic acids, proteins, and polysaccharides. RNA concentrations were high in the archesporial cells, low in the megaspore mother cell, and increased again to high concentrations with the formation of the megaspore and 2-, 4-, and early 8-nucleate embryo sac. RNA levels were also high in the egg and primary endosperm nucleus but low in the synergid and antipodal cells. Nucleolar size and vacuolation were indicative of RNA synthetic activity. Protein concentrations were parallel in concentration and distribution to those observed for RNA. Polysaccharides were conspicuously absent from all stages except the synergids and nucellar cells. Feulgen-stained DNA was demonstrable in the antipodal cells, megaspore mother cell, and megaspore cell, but was not visible in the 2-, 4-, or early 8-nucleate embryo sac. Feulgen staining was also absent from the egg and primary endosperm nucleus but was visible in the synergids and antipodals. Histones were difficult to visualize anywhere except in the egg cytoplasm and the nuclei of the antipodals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号