首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Bovine pulmonary artery endothelial cells in culture were used to assess the influence of oxygen tension on proteoglycan synthesis. Cells exposed to 3% O2 (hypoxia) for 72 h and then labeled with [35S]sulfate for 5 h accumulated significantly less [35S]proteoglycan in medium than cells exposed to 20% O2 (control). This decrease was due primarily to a reduction in heparan sulfate. Cells exposed to 80% O2 (hyperoxia) for 72 h secreted slightly more [35S]proteoglycan into medium than controls. Greater accumulation of chondroitin sulfate was responsible for the increase. The amount of cell-associated proteoglycan did not change significantly in cells cultured in 3% or 80% O2 as compared with control cells cultured in 20% O2. Proteoglycans produced by hypoxia- or hyperoxia-treated cells were found to be similar in size to proteoglycans produced by cells cultured at 20% O2. Glycosaminoglycan sulfation, as measured by ion-exchange chromatography, did not appear to change with varying oxygen tensions. Our results demonstrate that production of proteoglycans secreted by endothelial cells in culture is sensitive to oxygen tension.  相似文献   

4.
Gong LM  Du JB  Shi L  Shi Y  Tang CS 《Life sciences》2004,74(10):1225-1241
To study the role of endogenous carbon monoxide (CO) in collagen metabolism during hypoxic pulmonary vascular remodeling, a total of 18 Wistar rats were used in the study and they were randomly divided into three groups: hypoxia group (n = 6), hypoxia with zinc protoporphyrin-IX (ZnPP-IX) group (n = 6) and control group (n = 6). The measurement of mean pulmonary artery pressure (mPAP) and carboxyhemoglobin (HbCO) formation in lung tissue homogenates was measured. A morphometric analysis of pulmonary vessels was performed, in which the percentage of muscularized arteries (MA); partially muscularized arteries (PMA) and nonmuscularized arteries (NMV) in small and median pulmonary vessels, relative medial thickness (RMT) and relative medial area (RMA) of pulmonary arteries were analyzed. Collagen type I and III and transforming growth factor-beta3 (TGF-beta3) expressions were detected by immunohistochemical assay. The expressions of procollagen type I and III and TGF-beta3 mRNA were detected by in situ hybridization. The results showed that ZnPP-IX significantly increased mPAP and markedly decreased HbCO formation in lung tissue homogenates in rats under hypoxia (P < 0.01). In the hypoxia rats treated with ZnPP-IX, the percentage of muscularized arteries of small and median pulmonary vessels was obviously increased, and RMT and RMA of intra-acinar muscularized pulmonary arteries were markedly increased compared with hypoxic rats. Ultrastructural changes, such as hyperplasia and hypertrophy of endothelial cells (ECs) and smooth muscle cells (SMCs) and the increased number of SMCs in synthetic phenotype were found in intra-acinar pulmonary muscularized arteries of hypoxic rats treated with ZnPP-IX. Meanwhile, ZnPP-IX promoted the expression of collagen type I and III and TGF-beta3 protein in pulmonary arteries of rats under hypoxia (P < 0.01). Furthermore, ZnPP-IX elevated obviously the expressions of procollagen type I and III mRNA, and TGF-beta3 mRNA in pulmonary arteries of rats under hypoxia (P < 0.01). The results of this study suggested that ZnPP-IX played an important role in promoting collagen synthesis in pulmonary arteries of rats with hypoxic pulmonary structural remodeling by increasing the expression of TGF-beta3. The above findings also suggested a possible role of endogenous CO in the pathogenesis of chronic hypoxic pulmonary hypertension.  相似文献   

5.
目的:探讨低氧时人肺动脉平滑肌细胞(HPASMC)和人肺动脉内皮细胞(HPAEC)的高迁移率族蛋白1(HMGB1)及相关受体和炎症因子表达,并检测HMGB1对两种细胞增殖、迁移活性的影响。方法:低氧(1%氧浓度,Hypoxia组)及常氧(Control组)条件下培养HPASMC和HPAEC,RealTime-PCR检测两种细胞HMGB1、TLR2、TLR4、TLR9、RAGE、CD24、IL-6 、TNF-a和CXCL8 mRNA等受体和炎性因子的表达。MTS法观察不同浓度HMGB1对HPASMC和HPAEC增殖的影响;划痕法观察HMGB1对HPASMC和HPAEC迁移的影响。结果:Hypoxia组HPASMC、HPAEC中HMGB1及RAGE mRNA表达量较Control 组明显升高(P<0.05及0.01);Hypoxia组HPAEC中CD24及HPASMC中IL-6 mRNA表达明显增高(P均<0.05)。MTS结果显示在345 pmol/L 剂量下 HMGB1明显抑制HPAEC的增殖(P<0.01),而对HPASMC增殖无影响。划痕实验示HMGB1对HPASMC和HPAEC迁移无明显影响。结论:低氧诱导HPAEC、HPASMC 产生HMGB1;HMGB1通过抑制HPAEC增殖引起内皮屏障功能障碍;而低氧进一步刺激HPASMC产生炎症因子。  相似文献   

6.
We have studied the effect of alveolar hypoxia on fluid filtration characteristics of the pulmonary microcirculation in an in situ left upper lobe preparation with near static flow conditions (20 ml/min). In six dogs (group 1), rate of edema formation (delta W/delta t, where W is weight and t is time) was assessed over a wide range of vascular pressures under two inspired O2 fraction (FIO2) conditions (0.95 and 0.0 with 5% CO2-balance N2 in both cases). delta W/delta t was plotted against vascular pressure, and the best-fit linear regression was obtained. There was no significant difference (paired t test) in either threshold pressure for edema formation [18.3 +/- 1.8 and 17.1 +/- 1.2 (SE) mmHg, respectively] or the slopes (0.067 +/- 0.008 and 0.073 +/- 0.017 g.min-1. mmHg-1.100g-1, respectively). In another seven dogs (group 2), delta W/delta t was obtained at a constant vascular pressure of 40 mmHg under four FIO2 conditions (0.95, 0.21, 0.05, and 0.0, with 5% CO2-balance N2). Delta W/delta t for the four conditions averaged 0.60 +/- 0.11, 0.61 +/- 0.11, 0.61 +/- 0.10, and 0.61 +/- 0.10 (SE) g.min-1.mmHg-1.100g-1, respectively. No significant differences (ANOVA for repeated measures) were noted. We conclude that alveolar hypoxia does not alter the threshold for edema formation or delta W/delta t at a given microvascular pressure.  相似文献   

7.
To determine the effects of alveolar hypoxia on pulmonary microvascular volume, X-ray microfocal angiographic images of isolated perfused dog lung lobes were obtained during passage of a bolus of radiopaque contrast medium during both normoxic (alveolar gas, 15% O(2), 6% CO(2), and 79% N(2)) and hypoxic (3% O(2), 6% CO(2), and 91% N(2)) conditions. Regions of interest (ROIs) over the lobar artery and vein at low magnification and a feeding artery ( approximately 500 microm diameter) and the nearby microvasculature (vessels smaller than approximately 50 microm) at high magnification were identified, and X-ray absorbance vs. time curves were acquired under both conditions from the same ROIs. The total pulmonary vascular volume was calculated from the flow and the mean transit time for the contrast medium passage from the lobar artery to lobar vein. The fractional changes in microvascular volume were determined from the areas under the high-magnification X-ray absorbance curves. Hypoxia decreased lobar volume by 13 +/- 3% (SE) and regional microvascular volume by 26 +/- 4% (SE). Given the morphometry of the lung vasculature, these results suggest that capillary volume was decreased by hypoxia.  相似文献   

8.
Endothelial cells are critical targets in both hypoxia-and reoxygenation-mediated lung injury. Reactive O2 species (ROS) have been implicated in the pathogenesis of hypoxic and reoxygenation lung injury, and xanthine dehydrogenase/oxidase (XDH/XO) is a major generator of the ROS. Porcine pulmonary artery endothelial cells (PAEC) have no detectable XDH/XO. This study was undertaken to examine (1) ROS production by hypoxic porcine PAEC and their mitochondria and (2) ROS production and injury in reoxygenated PAEC lacking XDH/XO activity. Intracellular H2O2 generation and extracellular H2O2 and O/2 release were measured after exposure to normoxia (room air-5% CO2), hypoxia (0% O2 -95% N-5% CO2), or hypoxia followed by normoxia or hyperoxia (95% O2-5% CO2). Exposure to hypoxia results in significant reductions in intracellular H2 O2 formation and extracellular release of H2 O2 and O2 by PAEC and mitochondria. The reductions occur with as little as a 2 h exposure and progress with continued exposure. During reoxygenation, cytotoxicity was not observed, and the production of ROS by PAEC and their mitochondria never exceeded levels observed in normoxic cells. The absence of XDH/XO may prevent porcine PAEC from developing injury and increased ROS production during reoxygenation. © 1995 Wiley-Liss, Inc.  相似文献   

9.
Exposure of cultured bovine pulmonary artery endothelial cells to varying levels of hypoxia (10% or 0% O2) for 4 hours resulted in a significant dose-dependent inhibition in endothelial prostacyclin synthesis (51% and 98%, at the 10% and 0% O2 levels respectively, p <0.05, compared to 21% O2 exposure values). Release of 3H-arachidonic acid from cellular pools was not altered by hypoxia. Some of the cells were incubated with arachidonic acid (20 μM for 5 min) or PGH2 (4 μM for 2 min) immediately after exposure. Endothelium exposed to 0% O2, but not to 10% O2, produced significantly less prostacyclin after addition of either arachidonic acid (25 ± 5% of 21% O2 exposure values, n=6, p <0.01) or PGH2 (31 ± 3% of 21% O2 exposure values, n=6, p <0.05). These results suggest that hypoxia inhibits cyclooxygenase at the 10% O2 level and both cyclooxygenase and prostacyclin synthetase enzymes at the 0% O2 exposure levels. Exposure of aortic endothelial cells resulted in a 44% inhibition of prostacyclin at the 0% exposure level. No significant alteration in prostacyclin production was found in pulmonary vascular smooth muscle cells exposed to hypoxia. These data suggest that the increased prostacyclin production reported in lungs exposed to hypoxia is not due to a direct effect of hypoxia on the main prostacyclin producing cells of the pulmonary circulation.  相似文献   

10.
Exposure of cultured bovine pulmonary artery endothelial cells to varying levels of hypoxia (10% or 0% O2) for 4 hours resulted in a significant dose-dependent inhibition in endothelial prostacyclin synthesis (51% and 98%, at the 10% and 0% O2 levels respectively, p less than 0.05, compared to 21% O2 exposure values). Release of 3H-arachidonic acid from cellular pools was not altered by hypoxia. Some of the cells were incubated with arachidonic acid (20 microM for 5 min) or PGH2 (4 microM for 2 min) immediately after exposure. Endothelium exposed to 0% O2, but not to 10% O2, produced significantly less prostacyclin after addition of either arachidonic acid (25 +/- 5% of 21% O2 exposure values, n = 6, p less than 0.01) or PGH2 (31 +/- 3% of 21% O2 exposure values, n = 6, p less than 0.05). These results suggest that hypoxia inhibits cyclooxygenase at the 10% O2 level and both cyclooxygenase and prostacyclin synthetase enzymes at the 0% O2 exposure levels. Exposure of aortic endothelial cells resulted in a 44% inhibition of prostacyclin at the 0% exposure level. No significant alteration in prostacyclin production was found in pulmonary vascular smooth muscle cells exposed to hypoxia. These data suggest that the increased prostacyclin production reported in lungs exposed to hypoxia is not due to a direct effect of hypoxia on the main prostacyclin producing cells of the pulmonary circulation.  相似文献   

11.
Pulmonary vasoconstriction is influenced by inactivation of nitric oxide (NO) with extracellular superoxide (O2-*). Because the short-lived O2-* anion cannot diffuse across plasma membranes, its release from vascular cells requires specialized mechanisms that have not been well delineated in the pulmonary circulation. We have shown that the bicarbonate (HCO3-)-chloride anion exchange protein (AE2) expressed in the lung also exchanges O2-* for HCO3-. Thus we determined whether O2-* release involved in pulmonary vascular tone depends on extracellular HCO3-. We assessed endothelium-dependent vascular reactivity and O2-* release in the presence or absence of HCO3- in pulmonary artery (PA) rings isolated from normal rats and those exposed to hypoxia for 3 days. Lack of extracellular HCO3- in normal PA rings significantly attenuated endothelial O2-* release, opposed hypoxic vasoconstriction, and enhanced acetylcholine-mediated vasodilation. Release of O2-* was also inhibited by an AE2 inhibitor (SITS) and abolished in normoxia by an NO synthase inhibitor (NG-nitro-L-arginine methyl ester). In contrast, hypoxia increased PA AE2 protein expression and O2-* release; the latter was not affected by NG-nitro-l-arginine methyl ester or other inhibitors of enzymatic O2-* generation. Enhanced O2-* release by uncoupling NO synthase with geldanamycin was attenuated by hypoxia or by HCO3- elimination. These results indicate that O2-* produced by endothelial NOS in normoxia and unidentified sources in hypoxia regulate pulmonary vascular tone via AE2.  相似文献   

12.
13.
14.
We assessed the metabolism of low density lipoprotein (LDL) of human monocyte-derived macrophages under hypoxia. The specific binding and association of 125I-labeled LDL (125I-LDL) were not changed under hypoxia compared to normoxia. However, the degradation of 125I-LDL under hypoxia decreased to 60%. The rate of cholesterol esterification under hypoxia was 2-fold greater on incubation with LDL or 25-hydroxycholesterol. The cellular cholesteryl ester content was also greater under hypoxia on incubation with LDL. Secretion of apolipoprotein E into the medium was not altered under hypoxia, suggesting that apolipoprotein E independent cholesterol efflux may be reduced under hypoxia. Thus, hypoxia affects the intracellular metabolism of LDL, stimulates cholesterol esterification, and enhances cholesteryl ester accumulation in macrophages. Hypoxia is one of the important factors modifying the cellular lipid metabolism in arterial wall.  相似文献   

15.
The effect of chronic hypoxia (CH) for 14 days on Ca2+ signaling and contraction induced by agonists in the rat main pulmonary artery (MPA) was investigated. In MPA myocytes obtained from control (normoxic) rats, endothelin (ET)-1, angiotensin II (ANG II), and ATP induced oscillations in intracellular Ca2+ concentration ([Ca2+]i) in 85-90% of cells, whereas they disappeared in myocytes from chronically hypoxic rats together with a decrease in the percentage of responding cells. However, both the amount of mobilized Ca2+ and the sources of Ca2+ implicated in the agonist-induced response were not changed. Analysis of the transient caffeine-induced [Ca2+]i response revealed that recovery of the resting [Ca2+]i value was delayed in myocytes from chronically hypoxic rats. The maximal contraction induced by ET-1 or ANG II in MPA rings from chronically hypoxic rats was decreased by 30% compared with control values. Moreover, the D-600- and thapsigargin-resistant component of contraction was decreased by 40% in chronically hypoxic rats. These data indicate that CH alters pulmonary arterial reactivity as a consequence of an effect on both Ca2+ signaling and Ca2+ sensitivity of the contractile apparatus. A Ca2+ reuptake mechanism appears as a CH-sensitive phenomenon that may account for the main effect of CH on Ca2+ signaling.  相似文献   

16.
17.
The effect of pulmonary blood flow on leukocyte uptake and release by the lung was examined in 10 anesthetized spontaneously breathing dogs. Pulmonary arterial and pulmonary venous blood was sampled with catheters placed into the right ventricle and aorta, respectively. Pulmonary blood flow was lowered by inflating a balloon catheter located in the inferior vena cava. In five experiments simultaneous blood samples were drawn from the right ventricle and aorta at 10-s intervals during a control period, a 2- to 3-min period of low flow, and a recovery period. In five additional experiments, less frequent samples were taken over periods of 15-60 min. Total leukocyte concentrations and differential counts were determined for each blood sample. The study shows that large numbers of leukocytes become sequestered within the lung when pulmonary blood flow is low and that an equivalent number of cells are released from the lung after deflation of the balloon catheter. Both the polymorphonuclear leukocytes and the lymphocytes were taken up by the lung when pulmonary blood flow was reduced. We conclude that pulmonary blood flow has a marked effect on the uptake and release of leukocytes by the dog lung.  相似文献   

18.
19.
This study examined the noradrenergic mechanism in regulation of luteinizing hormone (LH) release in short- and long-term ovariectomized (OVX) steroids-primed rats. All rats were OVX on the diestrous day 1(D1) morning about 1000 h. After OVX, rats in the short-term OVX group were immediately primed with estradiol (E2, 0.1 mg/kg BW s.c.), fitted with atrial Silastic tubing, and a guide cannula in the right lateral cerebroventricle stereotaxically. Rats in the long-term OVX group received the same treatment (E2, atrial tubing and guide cannula implantation) three weeks later. Rats in both groups received progesterone (2 mg/rat s.c.) at 0930 h on the next day after E2. At 1000 h, intraventricular administration of norepinephrine HCl (NE, 0.01, 0.1, or 1.0 microgram in 2 microliters saline) was given. In short-term OVX-steroids-primed rats, NE did not alter LH levels in the peripheral plasma within 60 or 100 min. By contrast, in long-term OVX-steroids-primed rats, 1.0 microgram of NE gradually decreased plasma LH concentrations, which became significantly different from the initial value at the 60 min time point after treatment. On the other hand, intraventricular injection of 5 ng of the LH-releasing hormone (LHRH) elevated plasma LH concentrations within 10 min in both groups of rats, but at different efficacy: a brief release of LH in short-term OVX-steroids-primed rats and a prolonged release of LH in long-term OVX-steroids-primed rats. These results indicated that the interval after OVX plays a critical role in modulating the responsiveness to NE and LHRH in the steroids-primed OVX rats.  相似文献   

20.
Effects of metabolism and anesthesia on pulmonary ventilation   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号