首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The primary structure of mouse interleukin-3 (IL-3) expressed by recombinant baculovirus-infected silkworm (Bombyx mori) larvae was analyzed by subjecting isolated IL-3 derived peptides to liquid secondary ion mass spectrometry. Two species of IL-3 were isolated from the silkworm hemolymph by reverse-phase high-pressure liquid chromatography. The major component has M(r)20-22 x 10(3) as determined by SDS-PAGE. Liquid secondary ion mass spectrometric analysis was carried out on the reduced tryptic and endopeptidase lysyl-C peptides of glycosylated and deglycosylated IL-3. These studies provided evidence that (1) Asn-16 is heterogeneously glycosylated with four different oligosaccharides, (2) Asn-86 is either nonglycosylated or has attached to it one oligosaccharide, (3) the N-glycosylation sites Asn-44 and Asn-51 are not glycosylated, and (4) there is no O-glycosylation. Liquid secondary ion mass spectrometric analysis of the unreduced tryptic peptides provided evidence for disulfide linkages between Cys-140 and Cys-79 or Cys-80 and between Cys-17 and Cys-79 or Cys-80. In comparison to the major component, a minor IL-3 species (M(r) 17-19 x 10(3) by SDS-PAGE) isolated from the hemolymph showed no difference with respect to the glycosylation pattern or the disulfide linkages, but it was cleaved between Ala-127 and Ser-128, and only a disulfide linkage between Cys-140 and Cys-79 or Cys-80 held the molecule together.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Four glycopeptides (I, IIA, IIB, III) with different oligosaccharide structures were isolated from purified mouse thymocyte Thy-1 glycoprotein. The glycoprotein was digested with Pronase, and the glycopeptide fraction was isolated by gel filtration and acetylated with [3H]acetic anhydride. The different glycan structures were separated by affinity chromatography on concanavalin A-Sepharose 4B and lentil lectin-Sepharose 4B. Size determinations of intact and exoglycosidase- and endoglycosidase-digested glycopeptides were performed by gel filtration on Bio-Gel P-6, calibrated with glycopeptides of known structure. On the basis of these experiments and on the behaviour of the glycopeptides on the lectin columns, the following structures of the oligosaccharide chains were proposed: I, triantennary 'complex-type' with terminal fucose; IIA, biantennary 'complex-type' without fucose; IIB, biantennary 'complex-type' with fucose; III, a mixture of 'high-mannose' chains containing either five or six mannose residues (approx. 50% of each). Amino acid analysis of the glycopeptides showed that the predominant oligosaccharide at glycosylation-site Asn-23 was of 'high-mannose' type, whereas the other two sites (Asn-75 and Asn-99) were glycosylated with 'complex-type' chains. Both these sites were shown to be variably glycosylated. The major glycans linked to Asn-75 were of structures I and IIB, whereas all three 'complex-type' chains were represented at Asn-99. The results presented explain the previously reported carbohydrate heterogeneity of thymocyte Thy-1 glycoprotein.  相似文献   

3.
The oligosaccharide side chains of a human anti-lipopolysaccharide IgM produced by a human-human-mouse heterohybridoma were analyzed at each of its five conserved N-glycosylation sites. This antibody also has a potential sixth N-glycosylation site in the variable region of its heavy chain which is not glycosylated. The oligosaccharides were released by digestion with various endo- and exoglycosidases and analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and fluorophore-assisted carbohydrate electrophoresis. The antibody has various complex- and hybrid-type oligosaccharide structures at Asn 171, various sialylated complex-type oligosaccharides at Asn 332 and 395, and high-mannose-type oligosaccharides at Asn 402 and 563. Of note is the presence in this human IgM of oligosaccharides containing N-glycolylneuraminic acid and N-acetylneuraminic acid in the ratio of 98:2 as determined using anion- exchange chromatography. Furthermore, we observed oligosaccharide structures containing Gal alpha (1,3)Gal that have not been reported as components of human glycoproteins.   相似文献   

4.
MFE-CP is a recombinant antibody-enzyme fusion protein used for antibody-mediated delivery of an enzyme to cancer deposits. After clearance from normal tissues, the tumor-targeted enzyme is used to activate a subsequently administered prodrug to give a potent cytotoxic in the tumor. MFE-CP localizes to cancer deposits in vivo, but we propose that its therapeutic potential could be improved by N-glycosylation, obtained by expression in Pichia pastoris. Glycosylation could enhance clearance from healthy tissue and result in better tumor:normal tissue ratios. To test this, glycosylated MFE-CP was expressed and purified from P. pastoris. The resultant MFE-CP fusion protein was enzymatically active and showed enhanced clearance from normal tissues in vivo. Furthermore, it showed effective tumor localization. This favorable glycosylation pattern was analyzed by tandem mass spectrometry. High-resolution, high-detection sensitivity collision-induced dissociation experiments proved essential for this task. Results showed that of the three potential N-glycosylation sites only two were consistently occupied with oligomannose structures. Asn-442 appeared the most heterogeneously populated with oligomannose carbohydrates extending from 5 to 13 units in length. Asn-484 was found only in its nonglycosylated form. There was less heterogeneity at Asn-492, which was glycosylated with oligosaccharide structures ranging from 8 to 10 mannose units. Nonglycosylated forms of Asn-442 and Asn-492 were not observed.  相似文献   

5.
Immunoglobulin M is an especially important product of the immune system because it plays a critical role in early protection against infections. In this report, the glycosylation pattern of the protective murine monoclonal IgM 12A1 to Cryptococcus neoformans polysaccharide was analyzed by high-performance liquid chromatography coupled with electrospray ionization mass spectrometry. Peptide mapping studies covering 88% of the deduced amino acid sequence indicated that of the six potential N-glycosylation sites in this antibody only five were utilized, as the tryptic peptide derived from monoclonal IgM 12A1 containing Asn-260 was recovered without carbohydrates. The oligosaccharide side chains of monoclonal IgM 12A1 were characterized at each of the N-glycosylation sites. Asn-166 possessed 20 monosialylated and nonsialylated, and fucosylated and nonfucosylated complex- and hybrid-type oligosaccharides and one high-mannose-type oligosaccharide. Thirteen oligosaccharides were attached to the site at Asn-401, including six complex-type, four hybrid-type, and three high-mannose-type oligosaccharides. Twelve hybrid-type oligosaccharides were attached to Asn-378, three of which had terminal sialic acids. Eleven hybrid-type oligosaccharides were attached to Asn-331, seven of which had terminal sialic acids. Only two high-mannose type oligosaccharides were attached to Asn-363. These results indicated great complexity in the structure and composition of oligosaccharides attached to individual IgM glycosylation sites.  相似文献   

6.
Tripeptidyl-peptidase I (TPP I) is a lysosomal serine-carboxyl peptidase that sequentially removes tripeptides from polypeptides. Naturally occurring mutations in TPP I are associated with the classic late infantile neuronal ceroid lipofuscinosis. Human TPP I has five potential N-glycosylation sites at Asn residues 210, 222, 286, 313, and 443. To analyze the role of N-glycosylation in the function of the enzyme, we obliterated each N- glycosylation consensus sequence by substituting Gln for Asn, either individually or in combinations, and expressed mutated cDNAs in Chinese hamster ovary and human embryonic kidney 293 cells. Here, we demonstrate that human TPP I in vivo utilizes all five N-glycosylation sites. Elimination of one of these sites, at Asn-286, dramatically affected the folding of the enzyme. However, in contrast to other misfolded proteins that are retained in the endoplasmic reticulum, only a fraction of misfolded TPP I mutant expressed in Chinese hamster ovary cells, but not in human embryonic kidney 293 cells, was arrested in the ER, whereas its major portion was secreted. Secreted proenzyme formed non-native, interchain disulfide bridges and displayed only residual TPP I activity upon acidification. A small portion of TPP I missing Asn-286-linked glycan reached the lysosome and was processed to an active species; however, it showed low thermal and pH stability. N-Glycans at Asn-210, Asn-222, Asn-313, and Asn-443 contributed slightly to the specific activity of the enzyme and its resistance to alkaline pH-induced inactivation. Phospholabeling experiments revealed that N-glycans at Asn-210 and Asn-286 of TPP I preferentially accept a phosphomannose marker. Thus, a dual role of oligosaccharide at Asn-286 in folding and lysosomal targeting could contribute to the unusual, but cell type-dependent, fate of misfolded TPP I conformer and represent the molecular basis of the disease process in subjects with naturally occurring missense mutation at Asn-286.  相似文献   

7.
CD4 is a glycoprotein that is expressed on the surface of a variety of cells of the immune system and is believed to participate in the interactions of these cells with antigen-presenting cells bearing the class II major histocompatibility (MHC) antigens. CD4 also acts as the receptor for the human immunodeficiency virus (HIV) by binding to the viral glycoprotein gp120. Recombinant soluble CD4 (rCD4) is a truncated form of human CD4 that is secreted from transfected Chinese hamster ovary cells. This 368-amino-acid glycoprotein contains two potential sites of N-linked glycosylation (Asn-271 and Asn-300) and six cysteine residues. Amino-terminal sequence analysis demonstrated that the sequence begins at the third residue of the polypeptide originally predicted from the cDNA analysis [Maddon, P.J. et al. (1985) Cell 42, 93-104]. The rest of the primary sequence was confirmed by analysis of peptides purified by reversed-phase HPLC after digestion of S-carboxymethylated rCD4 with trypsin. Anhydrotrypsin affinity chromatography of trypsin-digested rCD4 confirmed that the carboxy-terminus of the protein was Pro-368. Enzymatic digestion of non-reduced rCD4 generated disulfide-bonded fragments that demonstrated the presence of disulfide bonds between Cys-16 and Cys-84, Cys-130 and Cys-159, and between Cys-303 and Cys-345. The constituent monosaccharides of the carbohydrate structures of rCD4 were found to be fucose, mannose, galactose, N-acetylglucosamine and N-acetylneuraminic acid. Characterization of the tryptic map of rCD4 after treatment with peptide: N-glycosidase F demonstrated that both potential N-glycosylation sites are utilized. The tryptic map of rCD4 treated with endo-beta-N-acetylglucosamine H demonstrated that only complex-type oligosaccharides are attached to Asn-271, while Asn-300 has high-mannose or hybrid structures attached in addition to complex-type oligosaccharides. Glucosamine was observed only in glycopeptides that contain Asn-300 or Asn-271 while no galactosamine was observed. This suggests that rCD4 contains no O-linked oligosaccharides.  相似文献   

8.
N-acylethanolamine-hydrolyzing acid amidase (NAAA) is a lysosomal enzyme hydrolyzing bioactive N-acylethanolamines, including anandamide and N-palmitoylethanolamine. Previously, we suggested that NAAA is glycosylated and proteolytically cleaved. Here, we investigated the mechanism and significance of the cleavage of human NAAA overexpressed in human embryonic kidney 293 cells. Western blotting with anti-NAAA antibody revealed that most of NAAA in the cell homogenate was the cleaved 30-kDa form. However, some of NAAA were released outside the cells and the extracellular enzyme was mostly the uncleaved 48-kDa form. When incubated at pH 4.5, the 48-kDa form was time-dependently converted to the 30-kDa form with concomitant increase in the N-palmitoylethanolamine-hydrolyzing activity. The purified 48-kDa form was also cleaved and activated. However, the cleavage did not proceed at pH 7.4 or in the presence of p-chloromercuribenzoic acid. The mutant C126S was resistant to the cleavage and remained inactive. These results suggested that this specific proteolysis is a self-catalyzed activation step. We next determined N-glycosylation sites of human NAAA by site-directed mutagenesis addressed to asparagine residues in six potential N-glycosylation sites. The results exhibited that Asn-37, Asn-107, Asn-309, and Asn-333 are actual N-glycosylation sites. The glycosylation appeared to play an important role in stabilizing the enzyme protein.  相似文献   

9.
The small keratan sulfate-substituted proteoglycan (fibromodulin) from articular cartilage was shown to contain keratan sulfate linked to the core protein through N-glycosidic linkages to residues Asn-109, Asn-147, Asn-182, and Asn-272. Biosynthetic experiments with articular chondrocytes in the presence of tunicamycin, an inhibitor of N-linked oligosaccharide synthesis, demonstrated a specific inhibition of [35S]SO4 incorporation into fibromodulin. Under the same conditions no effect on the addition of keratan sulfate to the large aggregating proteoglycan was detected. Fibromodulin substituted with keratan sulfate was purified from bovine articular cartilage extracts by density gradient centrifugation, ion-exchange chromatography, and gel-permeation chromatography. Isolation of glycosylated peptides from tryptic digests of fibromodulin by ion-exchange chromatography and reversed-phase high performance liquid chromatography revealed four separate hexosamine-rich species, that were also immunoreactive with monoclonal antibody 5D4. Sequence analysis of these glycopeptides gave blank cycles at positions which corresponded to Asn followed by X-Ser/Thr in the sequence derived from cDNA (Oldberg, A., Antonsson, P., Lindblom, K., and Heinegard, D. (1989) EMBO J. 8, 2601-2604). Hence, all four Asn residues in the leucine-rich region of the fibromodulin core protein can serve as acceptor sites for keratan sulfate addition.  相似文献   

10.
Follistatin (FS), a glycoprotein, plays an important role in cell growth and differentiation through the neutralization of the biological activities of activins. In this study, we analyzed the glycosylation of recombinant human FS (rhFS) produced in Chinese hamster ovary cells. The results of SDS-PAGE and MALDI-TOF MS revealed the presence of both non-glycosylated and glycosylated forms. FS contains two potential N-glycosylation sites, Asn95 and Asn259. Using mass spectrometric peptide/glycopeptide mapping and precursor-ion scanning, we found that both N-glycosylation sites were partially glycosylated. Monosaccharide composition analyses suggested the linkages of fucosylated bi- and triantennary complex-type oligosaccharides on rhFS. This finding was supported by mass spectrometric oligosaccharide profiling, in which the m/z values and elution times of some of the oligosaccharides from rhFS were in good agreement with those of standard oligosaccharides. Site-specific glycosylation was deduced on the basis of the mass spectra of the glycopeptides. It was suggested that biantennary oligosaccharides are major oligosaccharides located at both Asn95 and Asn259, whereas the triantennary structures are present mainly at Asn95.  相似文献   

11.
Human gastric lipase (HGL) is a highly glycosylated protein, as glycan chains account for about 15% of the molecular mass of the native HGL. Four potential N-glycosylation consensus sites (Asn15, 80, 252 and 308) can be identified from the HGL amino acid sequence. We studied the functional role of the individual N-linked oligosaccharide chains by removing one by one all the N-glycosylation sites, via Ala residue replacement by site-directed mutagenesis of Ser and Thr residues from the consensus sequences Asn-X-Ser/Thr. Mutagenized cDNA constructs were heterologously expressed in the baculovirus/insect cell system. Removal of oligosaccharides either at Asn15, 80 or 252 was found to have no significant influence on the enzymatic activity measured in vitro. However, the absence of glycosylation at Asn308, as well as a total deglycosylation, reduced the specific enzymatic activity of recombinant HGL (r-HGL), measured on short- and long-chain triglycerides, to about 50% of normal values. Furthermore, biosynthesis and secretion of r-HGL markedly dropped when all four potential glycosylation sites were mutated. The kinetics of the interfacial adsorption of r-HGL and the completely deglycosylated r-HGL (four-site mutant) were found to be identical when recording the changes with time of the surface pressure either at the air-water interface or in the presence of an egg phosphatidylcholine (PtdCho) monomolecular film spread at various initial surface pressures. This indicates that both recombinant HGLs are identical, as far as recognition of phospholipid film and adsorption on PtdCho are concerned. The N-glycosylation of HGL may contribute to the enzyme stability in the stomach, as under acidic conditions the degradation by pepsin of the unglycosylated r-HGL is increased.  相似文献   

12.
The mammalian oocyte is encased by a transparent extracellular matrix, the zona pellucida (ZP), which consists of three glycoproteins, ZPA, ZPB, and ZPC. The glycan structures of the porcine ZP and the complete N-glycosylation pattern of the ZPB/ZPC oligomer has been recently described. Here we report the N-glycan pattern and N-glycosylation sites of the porcine ZP glycoprotein ZPA of an immature oocyte population as determined by a mass spectrometric approach. In-gel deglycosylation of the electrophoretically separated ZPA protein and comparison of the pattern obtained from the native, the desialylated and the endo-beta-galactosidase-treated glycoprotein allowed the assignment of the glycan structures by MALDI-TOF MS by considering the reported oligosaccharide structures. The major N-glycans are neutral biantennary complex structures containing one or two terminal galactose residues. Complex N-glycans carrying N-acetyllactosamine repeats are minor components and are mostly sialylated. A significant signal corresponding to a high-mannose type chain appeared in the three glycan maps. MS/MS analysis confirmed its identity as a pentamannosyl N-glycan. By the combination of tryptic digestion of the endo-beta-galactosidase-treated ZP glycoprotein mixture and in-gel digestion of ZPA with lectin affinity chromatography and reverse-phase HPLC, five of six N-glycosylation sites at Asn(84/93), Asn268, Asn316, Asn323, and Asn530 were identified by MS. Only one site was found to be glycosylated in the N-terminal tryptic glycopeptide with Asn(84/93.) N-glycosidase F treatment of the isolated glycopeptides and MS analysis resulted in the identification of the corresponding deglycosylated peptides.  相似文献   

13.
Human 1,3-fucosyltransferase V and -VI (hFucTV and -VI) each contain four potential N-glycosylation sites (hFucTV: Asn60, Asn105, Asn167 and Asn198 and hFucTVI: Asn46, Asn91, Asn153 and Asn184). Glycosylation of the two N-terminal potential N-glycosylation sites (hFucTV: Asn60, Asn105 and hFucTVI: Asn46 and Asn91) have never been studied in detail. In the present study, we have analysed the glycosylation of these potential N-glycosylation sites. Initially, we compared the molecular mass of hFucTV and -VI expressed in COS-7 cells treated with tunicamycin with the mass of the proteins in untreated cells. The difference in molecular mass between the proteins in treated and untreated cells corresponded to the presence of at least three N-linked glycans. We then made a series of mutants, in which the asparagine residues in the N-terminal potential N-glycosylation sites were replaced by glutamine. Western blotting analyses demonstrated that both sites in hFucTV were glycosylated, whereas in hFucTVI only one of the sites (Asn91) was glycosylated. All the single mutants and the hFucTVI N46Q/N91Q double mutant exhibited enzyme activities that did not differ considerably from the wt activities. However, the enzyme activity of the hFucTV N60Q/N105Q double mutant was reduced to approximately 40% of the wt activity. In addition, castanospermine treatment diminished the enzyme activity and hence trimming of the N-linked glycans are required for expression of full enzyme activity of both hFucTV and -VI. The present study demonstrates that both of the N-terminal potential N-glycosylation sites in hFucTV and one of the sites in hFucTVI are glycosylated. Individually, their glycosylation does not contribute considerably to expression of enzyme activity. However, elimination of both sites in hFucTV reduces the enzyme activity.  相似文献   

14.
Previously, a combined use of fast atom bombardment (FAB) mass spectrometry and peptide N-glycosidase F, an enzyme that cleaves the beta-aspartylglycosylamine linkage of Asn-linked carbohydrates, was successfully applied to identification of N-glycosylation sites in a glycoprotein with the known or DNA-derived sequence (S. A. Carr and G. D. Roberts, 1986, Anal. Biochem. 157, 396-406). Here, we extended the method for easier identification of N-glycosylation sites in a glycoprotein even with unknown sequence. The glycoprotein is digested with peptide-N-glycosidase F in buffer containing 40 at% H2 18O, to yield a deglycosylated protein whose carbohydrate-linked Asn residues are converted to Asp partly labeled with 18O at their beta-carboxyl group during this digestion. The deglycosylated protein is further digested with proteolytic enzymes in an appropriate buffer prepared with normal water, and then peptides are separated on a reversed-phase column by HPLC. Peptides in which carbohydrate-linked Asn has been converted to Asp show a pair of signals ([M + 1]+ and [M + 3]+) in FAB mass spectra due to the partial incorporation of 18O into the beta-carboxyl groups of Asp residues, while the other peptides show normal isotopic ion distributions. Thus, both formally N-glycosylated peptides and, using collision-induced dissociation analysis, N-glycosylation sites can be identified. The application of the present method to the determination of N-glycosylation sites in a recombinant glycoprotein, Bacillus licheniformis alpha-amylase, is described.  相似文献   

15.
Purple acid phosphatase (PAP), also known as tartrate-resistant acid phosphatase or uteroferrin, contains two potential consensus N-glycosylation sites at Asn(97) and Asn(128). In this study, endogenous rat bone PAP was found to possess similar N-glycan structures as rat recombinant PAP heterologously expressed in baculovirus-infected Sf9 insect cells. PAP from Sf9 cells was shown to contain two N-linked oligosaccharides, whereas PAP expressed by mammalian CHO-K1 cells was less extensively glycosylated. The extent of N-glycosylation affected the catalytic properties of the enzyme, as N97Q and N128Q mutants, containing a single oligosaccharide chain, exhibited a lower substrate affinity and catalytic activity compared to those of the fully glycosylated PAP in the native, monomeric state. The differences in substrate affinity and catalytic activity were abolished and partially restored, respectively, by proteolytic cleavage in the loop domain, indicating that the extent of N-glycosylation influences the interaction of the repressive loop domain with catalytically important residues.  相似文献   

16.
Matrix-assisted laser desorption ionisation-time of flight (MALDI-TOF) spectrometry is a recently developed soft ionisation mass spectrometry technique which appears as a highly efficient tool for the N-glycosylation analysis of glycoproteins. The potentiality of this analytical technique is illustrated through the analysis of the N-glycosylation of the isolectin L of bean phytohemagglutinin (PHA-L). The analysis was carried out on the native PHA-L as well as on the N-glycans released from this lectin. Furthermore, the two glycopeptides containing the potential N-glycosylation sites prepared by proteolytic cleavage of PHA-L and purified by HPLC were analysed by MALDI-TOF. This study has confirmed that PHA-L is N-glycosylated by two populations of oligosaccharides, high-mannose-type N-glycans and paucimannosidic-type N-glycans, located on Asn-12 and Asn-60, respectively, and has pointed out the microheterogeneity of the glycans N-linked on both Asn residues.  相似文献   

17.
Human apolipoprotein B100 (apoB100) has 19 potential N-glycosylation sites, and 16 asparagine residues were reported to be occupied by high-mannose type, hybrid type, and monoantennary and biantennary complex type oligosaccharides. In the present study, a site-specific glycosylation analysis of apoB100 was carried out using reversed-phase high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC/ESI MS/MS). ApoB100 was reduced, carboxymethylated, and then digested by trypsin or chymotrypsin. The complex mixture of peptides and glycopeptides was subjected to LC/ESI MS/MS, where product ion spectra of the molecular ions were acquired data-dependently. The glycopeptide ions were extracted and confirmed by the presence of carbohydrate-specific fragment ions, such as m/z 204 (HexNAc) and 366 (HexHexNAc), in the product ion spectra. The peptide moiety of glycopeptide was determined by the presence of the b- and y-series ions derived from its amino acid sequence in the product ion spectrum, and the oligosaccharide moiety was deduced from the calculated molecular mass of the oligosaccharide. The heterogeneity of carbohydrate structures at 17 glycosylation sites was determined using this methodology. Our data showed that Asn2212, not previously identified as a site of glycosylation, could be glycosylated. It was also revealed that Asn158, 1341, 1350, 3309, and 3331 were occupied by high-mannose type oligosaccharides, and Asn 956, 1496, 2212, 2752, 2955, 3074, 3197, 3438, 3868, 4210, and 4404 were predominantly occupied by mono- or disialylated oligosaccharides. Asn3384, the nearest N-glycosylation site to the LDL-receptor binding site (amino acids 3359-3369), was occupied by a variety of oligosaccharides, including high-mannose, hybrid, and complex types. These results are useful for understanding the structure of LDL particles and oligosaccharide function in LDL-receptor ligand binding.  相似文献   

18.
E-cadherin mediates calcium-dependent cell-cell adhesion between epithelial cells. The ectodomain of human E-cadherin contains four potential N-glycosylation sites at Asn residues 554, 566, 618, and 633. In this study, the role of N-glycosylation in E-cadherin-mediated cell-cell adhesion was investigated by site-directed mutagenesis. In MDA-MB-435 cells, all four potential N-glycosylation sites of human E-cadherin were N-glycosylated. Removal of N-glycan at Asn-633 dramatically affected E-cadherin stability. In contrast, mutant E-cadherin lacking the other three N-glycans showed similar protein stability in comparison with wild-type E-cadherin. Moreover, N-glycans at Asn-554 and Asn-566 were found to affect E-cadherin-mediated calcium-dependent cell-cell adhesion, and removal of either of the two N-glycans caused a significant decrease in calcium-dependent cell-cell adhesion accompanied with elevated cell migration. Analysis of the composition of adherens junctions (AJs) revealed that removal of N-glycans on E-cadherin resulted in elevated tyrosine phosphorylation level of beta-catenin and reduced beta- and alpha-catenins at AJs. These findings demonstrate that N-glycosylation may affect the adhesive function of E-cadherin through modifying the composition of AJs.  相似文献   

19.
Albumin Casebrook is an electrophoretically slow genetic variant of human albumin with a relative molecular mass 2.5 kDa higher than normal albumin. It constitutes about 35% of total serum albumin in heterozygous carriers. The decrease in negative charge observed on incubation with sialidase suggested the presence of a carbohydrate moiety and the normalization of molecular weight following treatment with Endo-F indicated that this was an N-linked oligosaccharide. Partial acid hydrolysis and limited tryptic digestion established that the oligosaccharide was located in the C-terminal domaine, between residues 367 and 585. Tryptic, chymotryptic and S. aureus V8 proteinase digestions were carried out and the resulting glycopeptides were purified on concanavalin A-Sepharose. Peptide mapping of bound and unbound fractions followed by amino acid composition and sequence analysis, established a point mutation of 494 Asp → Asn. This introduces an Asn-Glu-Thr N-linkrf oligosaccharide attachment sequence centered on Asn-494 and explains the increase in molecular mass. There was no apparent pathology associated with the presence of this new glycosylated albumin, which was detected in two unrelated individuals of Anglo-Saxon descent.  相似文献   

20.
The correct intracellular sorting of lysosomal enzymes such as arylsulfatase A depends on the presence of mannose 6-phosphate residues on high mannose type oligosaccharides. The arylsulfatase A cDNA contains three potential N-glycosylation sites, two of which are utilized. We have mutated one or two of the N-glycosylation sites and analyzed the glycosylation, phosphorylation, and intracellular sorting of the mutant arylsulfatase A polypeptides. The results show that each of the three glycosylation sites (I, II, and III) can be glycosylated, but glycosylation at sites I and II is mutually exclusive. In mutants with one oligosaccharide side chain at positions I, II, or III all side chains can acquire mannose 6-phosphate residues irrespective of their location. This demonstrates spatial flexibility of the phosphotransferase, which specifically recognizes lysosomal enzymes and initiates the addition of mannose 6-phosphate residues on oligosaccharide side chains. However, these mutants have different intracellular sorting efficiencies and seem to use different (mannose 6-phosphate receptor-dependent and -independent) sorting pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号