首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A dehydrogenase enzyme assay has been developed to measure microbial activity in petroleum-contaminated beach sediments. The assay, using 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyltetrazoliumchloride (INT) as the substrate provides a reliable measurement of overall indigenous microbiological activity in beach sediments containing 7% (w/w) oil. The method has been effectively used in field studies (Mathew et al. 1999) to monitor microbial activity in conjunction with the biodegradation of petroleum hydrocarbons.  相似文献   

2.
Summary The experiments reported in this paper aim at characterizing the carboxylic acid transport, the interactions of pyruvate and citrate with their transport sites and specificity. The study of these carriers was performed using isotopic solutes for the influx measurements in brush-border membrane vesicles under zerotrans conditions where the membrane potential was abolished with KCl preloading with valinomycin or equilibrium exchange conditions and =0.Under zerotrans condition and =0, the influence of pyruvate concentrations on its initial rates of transport revealed the existence of two families of pyruvate transport sites, one with a high affinity for pyruvate (K t =88 m) and a low affinity for sodium (K t =57.7mm) (site I), the second one with a low affinity for pyruvate (K t =6.1mm) and a high affinity for sodium (K t =23.9mm) (site II). The coupling factor [Na]/[pyruvate] stoichiometry were determined at 0.25mm and 8mm pyruvate and estimated at 1.8 for site I, and 3 when the first and the second sites transport simultaneously.Under chemical equilibrium (0) single isotopic labeling, transport kinetics of pyruvate carrier systems have shown a double interaction of pyruvate with the transporter; the sodium/pyruvate stoichiometry also expressed according to a Hill plot representation wasn=1.7. The direct method of measuring Na+/pyruvate stoichiometry from double labeling kinetics and isotopic exchange, for a time course, gives an=1.67.Studies of transport specificity, indicate that the absence of inhibition of lactate transport by citrate and the existence of competitive inhibition of lactate and citrate transports by pyruvate leads to the conclusion that the low pyruvate affinity site can be attributed to the citrate carrier (tricarboxylate) and the high pyruvate affinity site to the lactate carrier (monocarboxylate).  相似文献   

3.
The detrital food web is a major nexus of energy flow in nearly all aquatic ecosystems. Energy enters this nexus by microbial assimilation of detrital carbon. To link microbiological variables with ecosystem process, it is necessary to understand the regulatory hierarchy that controls the distribution of microbial biomass and activity. Toward that goal, we investigated variability in microbial abundance and activities within the tidal freshwater estuary of the Hudson River. Surface sediments were collected from four contrasting sites: a mid-channel shoal, two types of wetlands, and a tributary confluence. These samples, collected in June to August 1992, were sorted into two to four size fractions, depending on the particle size distribution at each site. Each fraction was analyzed for bacterial biomass (by acridine orange direct counting), bacterial production (by 3H-thymidine incorporation into DNA), fungal biomass (by ergosterol extraction), fungal production (by biomass accrual), and the potential activities of seven extracellular enzymes involved in the degradation of detrital structural molecules. Decomposition rates for particulate organic carbon (POC) were estimated from a statistical model relating mass loss rates to endocellulase activity. Within samples, bacterial biomass and productivity were negatively correlated with particle size: Standing stocks and rates in the <63-m class were roughly twofold greater than in the >4-mm class. Conversely, fungal biomass was positively correlated with particle size, with standing stocks in the largest size class more than 1OX greater than in the smallest. Extracellular enzyme activities also differed significantly among size classes, with high carbohydrase activities associated with the largest particles, while oxidative activities predominated in the smallest size classes. Among sites, the mid-channel sediments had the lowest POC standing stock (2% of sediment dry mass) and longest turnover time (approximately 1.7 years), with bacterial productivity approximately equal to fungal (56 vs. 46 g C per gram POC per day, respectively). In the Typha wetland, POC standing stock was high (10%); turnover time was about 0.3 years; and 90% of the microbial productivity was fungal (670 vs. 84 g C per gram POC per day). The other two sites, a Trapa wetland and a tributary confluence, showed intermediate values for microbial productivity and POC turnover. Differences among sites were described by regression models that related the distribution of microbial biomass (r 2 = 0.98) and productivity (r 2 = 0.81) to particle size and carbon quality. These factors also determined POC decomposition rates. Net microbial production efficiency (production rate/decomposition rate) averaged 10.6%, suggesting that the sediments were exporting large quantities of unassimilated dissolved organic carbon into the water column. Our results suggest that studies of carbon processing in large systems, like the Hudson River estuary, can be facilitated by regression models that relate microbial dynamics to more readily measured parameters. Correspondence to: R.L. Sinsabaugh  相似文献   

4.
In anoxic Spartina altemiflora—dominated sediments along a naturally occuring salinity gradient (the Cooper River estuary, South Carolina, U.S.A.), dimethylsulfoniopropionate (DMSP) was metabolized to dimethyl sulfide (DMS) and acrylate by sediment microbes. The rate of DMSP degradation and acrylate mineralization by sediment microbes was similar at all sites along this 25-km transect. However, sediments amended with acrylate (or DMSP) showed significantly higher rates of N2 fixation (measured as acetylene reduction activity) (ARA) in the saline sediments downstream than brackish sediments. These results are consistent with the fact that acrylate stimulated the rates of both denitrification and CO2 production in the saline sediments at the mouth of the river more than tenfold over rates in brackish sediments. Enrichment experiments indicate that microbes capable of using DMSP or acrylate were not present in upstream sediments despite the fact that microbial biomass, percent organic matter, and both glucose-stimulated ARA and denitrification were highest upstream. It appears that acrylate utilizing, N2 fixing, and denitrifying populations are insignificant in the lower salinity sediments of the estuary. These results may reflect the availability of DMSP, which averaged 10.3 nmol g wet wt–1 of saline sediments and levels less than our detection limit (1 m) in brackish sediments. Correspondence to: D.C. Yoch.  相似文献   

5.
Total heavy metal concentrations in marine sediments are not sufficient to reliably predict detrimental biological effects. Here we provide evidence that only bioavailable heavy metals have a significant impact on benthic microbial loop functioning. Sediment samples collected along 250 km of the Apulian coast (Mediterranean Sea) were analysed for total and bioavailable heavy metals (Cr, Cd, Pb and Cu), organic matter content, bacterial abundance, biomass and carbon production and -glucosidase activity. Sampling strategy was specifically designed to cover a wide range of environmental conditions and types of anthropogenic influences. Total heavy metal concentrations in the sediments were tightly coupled with organic matter content, whereas bioavailable heavy metal concentrations displayed an opposite pattern. Bioavailable Cr concentrations were up to 10-fold higher than values observed for the other bioavailable metals and significantly inhibited benthic bacterial metabolism and turnover. Results from this study suggest that functional microbial variables are highly sensitive to heavy metal contamination and could be used as bioindicators of stress conditions in coastal sediments.  相似文献   

6.
The addition of carbaryl (100g/ml) to a model estuarine ecosystem did not affect the number of bacteria in the sediment, but reduced the diversity (as measured by the rarefaction technique) of the microbial community as compared with a control model ecosystem. Two carbaryltolerant strains of bacteria were isolated from the carbaryl-treated system, but none were isolated from the control system. Bacterial growth and filter paper decomposition in mixed cultures was prevented by 100g/ml carbaryl, but this amount had no effect on the extracellular cellulase of an estuarine isolate. Increasing the amount of organic matter in the medium attenuated the toxicity of carbaryl to pure cultures of an estuarine isolate. The addition of 1, 10, or 100g/ml carbaryl to field plots had no effect on bacterial numbers, diversity, or filter paper decomposition. The amount of carbaryl in sediments exposed to 100g/ml fell below the limit of detection by thin-layer chromatography within 12 hours. In sterile and nonsterile model systems, carbaryl rapidly adsorbed to sediment, and hydrolyzed to 1-naphthol in both sediment and water. Although carbaryl may be toxic to bacteria under some conditions, the amounts that might enter and persist in an estuary are insufficient to have a significant impact on the sediment microbial community.  相似文献   

7.
Chlorobium limicola has been proposed to assimilate CO2 autotrophically via a reductive tricarboxylic acid cycle rather than via the Calvin cycle. This proposal has been a matter of considerable controversy. In order to determine which pathway is operative, the bacterium was grown on a mineral salts medium with CO2 as the main carbon source supplemented with specifically labeled 14C-pyruvate, and the incorporation of 14C into alanine (intracellular pyruvate), aspartate (oxaloacetate), glutamate (-ketoglutarate), and glucose (hexosephosphate) was measured in exponentially growing cells in long term labeling experiments. During growth in presence of pyruvate, 20% of the cell carbon were derived from pyruvate in the medium, 80% from CO2. Since pyruvate was not oxidized to CO2, only those compounds should become labeled which were synthesized from CO2 via pyruvate.The three amino acids and glucose were found to be labeled. Alanine had one fifth the specific radioactivity of the extracellular pyruvate, indicating that 20% of the intracellular pyruvate pool were derived from pyruvate in the medium, 80% were synthesized from CO2. Glucose had twice the specific radioactivity of alanine, showing that hexosephosphate synthesis from CO2 proceeded via the pyruvate pool. The latter finding is not consistent with the operation of the Calvin cycle, in which pyruvate is not an intermediate. The specific radioactivities of aspartate (oxaloacetate) and of glutamate (-ketoglutarate) were practically identical but considerably lower than that of alanine ( intracellular pyruvate). These findings are compatible with the operation of a reductive tricarboxylic acid cycle as mechanism of autotrophic CO2 fixation. Degradation studies of the cell components support this interpretation. Offprint requests to: G. Fuchs  相似文献   

8.
Summary Hansenula anomala, a yeast lacking malate enzyme, was able to grow in media containing malate or aspartate as sole carbon and energy sources. Both aspartate--ketoglutarate transaminase and pyruvate kinase activities changed their levels when the yeast was grown on different carbon sources. Pyruvate kinase activity was increased by fructose 1,6-diphosphate.These results indicate that in this yeast malate enzyme is not indispensable for the formation of pyruvate from malate or aspartate and that C4 dicarboxylic acids may provide pyruvate through the combined action of phosphoenolpyruvate carboxykinase and pyruvate kinase. It is also concluded that aspartate--ketoglutarate transaminase and pyruvate kinase are under regulatory control in Hansenula anomala.  相似文献   

9.
Nitrosomonas europaea is capable of maintaining an anaerobic metabolism, using pyruvate as an electron donor and nitrite as an electron acceptor; utilization of nitrite depends upon supply of both pyruvate and ammonia. The role of ammonia in this reaction was not determined. N europaea also assimilates CO2 anaerobically into cell material in the presence of nitrite (0.5–1.0 mM), pyruvate and ammonia. This reaction was partially inhibited by nitrite which apparently competed with CO2 for reducing power. Anaerobic nitrite respiration is sensitive to ionophores, FCCP being the most effective.Non-standard-abbreviations TCA trichloroacetic acid - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazon  相似文献   

10.
An experimental approach was taken to examine the processes of detritus decomposition in river sediments.Addition of macrophyte detritus (Alternanthera philoxeroides (Mart.) Griseb) to river sediment resultedin an increase in carbon mineralization from a sbasal rate of 200 up to 500 mg C m–2 d–1.Carbon mineralization after addition of oak detritus was only slightly higher than mineralization in sediments thatreceived no addition ( 200 mg C m–2 d–1). Bacterial biomass and production in sediments \s+ alligator-weedwere higher than in sediments + oak or zero-addition. In these experiments the major fate of addedalligatorweed was mineralization. For alligatorweed detritus, microbial metabolism depletes organic carbonrather than leading to increases in food quality. Therefore, a pulse input of alligatorweed detritus would notbe available as a long-term source of organic carbon. Oak detritus was not rapidly decomposed, and sopersists in these sediments for a longer period.  相似文献   

11.
H. Michaelis 《Hydrobiologia》1993,258(1-3):175-183
The stomach and gut content of 22 Mugil cephalus from the Banc d'Arguin shallows (Mauritanian coast, West Africa) is examined. Quartz grains are the predominant material found in the stomach together with small portions of benthic diatoms and flakes, aggregates of fine-grained inorganic and organic particles. As the composition of this material is modified by a sorting procedure during feeding it is difficult to conclude, whether seagrass stands (muddy and mixed sediments with sand fraction) or sandy flats are preferred as feeding habitats. The animals studied did not or not relevantly utilize the non-diatom microphytes, though the environment of the Banc d'Arguin is rich in microbial mats (cyanobacteria), Vaucheria beds and epiphytic vegetation of seagrass leaves.  相似文献   

12.
The inability of Hyphomicrobium X to grow on compounds such as pyruvate and succinate is most likely due to the absence of a functional pyruvate dehydrogenase (PDH) complex. Further support for this was sought by studying the effect of the introduction of the Escherichia coli pdh genes in Hyphomicrobium X on the pattern of substrate utilization by the latter organism. These genes were cloned by in vivo techniques using the broad-host range conjugative plasmid RP4: :Mucts. Plasmid RP4 derivatives containing pdh genes were selected by their ability to complement a pyruvate dehydrogenase deletion mutant of E. coli, strain JRG746 recA (ace-1pd) 18. The plasmids thus obtained could be transferred through an intermediary host (C600 recA), selecting only for an antibiotic resistance coded for by RP4 and back into JRG746 or other E. coli pdh mutants, upon which they still conferred the wild type phenotype. Enzyme assays showed that the latter strains, when carrying plasmid RP4 pdh1 also possessed PDH complex activity. Conjugation between the auxotrophic E. coli JRG746 (RP4 pdh1) strain and Hyphomicrobium X on pyruvate minimal agar gave rise to progeny which, on the basis of its morphology (stalked bacteria), their ability to grow on C1-compounds and to denitrify (now also with pyruvate) were identified as hyphomicrobia. This Hyphomicrobium X transconjugant was also able to grow in minimal medium with succinate, but no other novel growth substrates have been identified so far. An analysis of protein extracts with 2-dimensional gel electrophoresis indicated that Hyphomicrobium X and JRG746 only synthesized all three components of the PDH complex when carrying plasmid RP4 pdh1. These results are compatible with the suggested significance of the lack of a functional PDH complex in wild type Hyphomicrobium X.Abbreviations PDH pyruvate dehydrogenase - TCA tricarboxylic acid Dedicated to Prof. H. G. Schlegel on the occasion of his 60th birthday  相似文献   

13.
The -acetolactate synthase from Leuconostoc mesenteroides subsp. cremoris was purified to homogeneity in SDS-PAGE. The enzyme is a trimer of 3×55,000 Da. It was unstable but could be preserved by addition of pyruvate and thiamine pyrophosphate in the buffer. The enzyme exhibits Michaelis-Menten kinetics, and K m for pyruvate is 10 mM. Three intermediates in glucose metabolism (ATP, 3-phosphoglycerate, and phosphoenolpyruvate) exhibit a noncompetitive inhibition towards the enzyme. This enzyme does not require any divalent metal ion for activity. The -acetolactate synthase from Leuconostoc mesenteroides subsp. cremoris is not inhibited by the branched-chain amino acids (valine, leucine, and isoleucine), is FAD independent, and displays an optimal activity at pH 5.3. Therefore, it can be concluded that the purified enzyme belongs to the catabolic -acetolactate synthases, involved in the 2,3-butanediol pathway but not in branchedchain amino acids biosynthesis.  相似文献   

14.
The microbial communities associated with electrodes from underwater fuel cells harvesting electricity from five different aquatic sediments were investigated. Three fuel cells were constructed with marine, salt-marsh, or freshwater sediments incubated in the laboratory. Fuel cells were also deployed in the field in salt marsh sediments in New Jersey and estuarine sediments in Oregon, USA. All of the sediments produced comparable amounts of power. Analysis of 16S rRNA gene sequences after 3–7 months of incubation demonstrated that all of the energy-harvesting anodes were highly enriched in microorganisms in the -Proteobacteria when compared with control electrodes not connected to a cathode. Geobacteraceae accounted for the majority of -Proteobacterial sequences or all of the energy-harvesting anodes, except the one deployed at the Oregon estuarine site. Quantitative PCR analysis of 16S rRNA genes and culturing studies indicated that Geobacteraceae were 100-fold more abundant on the marine-deployed anodes versus controls. Sequences most similar to microorganisms in the family Desulfobulbaceae predominated on the anode deployed in the estuarine sediments, and a significant proportion of the sequences recovered from the freshwater anodes were closely related to the Fe(III)-reducing isolate, Geothrix fermentans. There was also a specific enrichment of microorganisms on energy harvesting cathodes, but the enriched populations varied with the sediment/water source. Thus, future studies designed to help optimize the harvesting of electricity from aquatic sediments or waste organic matter should focus on the electrode interactions of these microorganisms which are most competitive in colonizing anodes and cathodes.This revised version was published online in November 2004 with corrections to Volume 48.  相似文献   

15.
Pyruvate kinase (ATP: pyruvate phosphotransferase (EC 2.7.1.40) was partially purified from both autotrophically and heterotrophycally grown Paracoccus denitrificans. The organism grown under heterotrophic conditions contains four times more pyruvate kinase than under autotrophic conditions. The enzyme isolated from both sources exhibited sigmoidal kinetics for both phosphoenolpyruvate (PEP) and ADP. The apparent M m for ADP and PEP in the autotrophic enzyme were 0.63 mM ADP and 0.25 mM PEP. The effect of several low molecular weight metabolites on the pyruvate kinase activity was investigated. Ribose-5-phosphate, glucose-6-phosphate and AMP stimulated the reaction at low ADP levels; this stimulation was brought about by an alteration in the apparent K m for ADP. The pyruvate kinases differ in their response to adenine nucleotides, but both preparations seem to be under adenylate control. The results are discussed in relation to the role of pyruvate kinase as a regulatory enzyme in P. denitrificans grown under both autotrophic and heterotrophic conditions.Non-Common Abbreviations PEP phosphoenolpyruvate - R-5-P ribose-5-phosphate - G-6-P glucose-6-phosphate - F-6-P fructose-6-phosphate - 3-PGA 3-phosphoglycerate  相似文献   

16.
Pimenov  N. V.  Savvichev  A. S.  Rusanov  I. I.  Lein  A. Yu.  Ivanov  M. V. 《Microbiology》2000,69(6):709-720
Functioning of microbial communities in surface sediments of the Haakon Mosby underwater mud volcano (lat. 72°N) and in gas seepage fields of the Vestnesa Ridge was investigated using Mir-1 and Mir-2 deep-sea submersibles during the 40th voyage of the research vessel Academician Mstislav Keldysh. Large areas of sedimentary deposits of the Haakon Mosby mud volcano (HMMV) and pockmarks of the Vestnesa Ridge (VR) are covered with bacterial mats 0.1 to 0.5 cm thick. The microbial community making up bacterial mats of the HMMV was dominated by large filamentous bacteria with filaments measuring up to 100 m in length and 2 to 8 m in width. The occurrence of rosettes allowed the observed filamentous bacteria to be referred to the morphologically similar genera Leucothrix or Thiothrix. Three morphological types of filamentous bacteria were identified in bacterial mats covering VR pockmarks. Filaments of type one are morphologically similar with representatives of the genera Thioploca or Desmanthos. Type two filaments had numerous inclusions of sulfur and resembled representatives of the genus Thiothrix. The third morphological type was constituted by single filaments made up of tightly connected disk-like cells and can be assigned to the genus Beggiatoa. The rates of methane oxidation (up to 1570 l C/(dm3 day)) and sulfate reduction (up to 17 mg S/(dm3day)) measured in the surface sediments of HMMV and VR were close to the maximum rates of these processes observed in heavily polluted regions of the northwestern shelf of the Black Sea. High rates of microbiological processes correlated with the high number of bacteria. The rate of methane production in sediments studied was notably lower and ranged from 0.1 to 3.5 CH4/(dm3 day). Large areas of the HMMV caldera were populated by pogonophoras, represented by the two species Sclerolinum sp. and Oligobrachia sp. The mass development of Sclerolinum sp. in the HMMV caldera was by the activity of aerobic methane-oxidizing bacteria localized inside the cells of these animals. Bacterial cells were also found in the trophosome tissue of Oligobrachia sp., but in cells of these bacteria, we did not observe the membrane structures typical of methanotrophs. The localization pattern of pogonophoras on the surface of reduced sediments suggests that the predominant bacteria in Oligobrachia tissues are sulfur-oxidizing endosymbionts.  相似文献   

17.
The contents of several photosynthetic metabolites — 3-phosphoglyceric acid (3-PGA), pyruvate, nicotinamide adenine dinucleotide phosphate (NADP) and adenosine triphosphate (ATP) — were determined in leaves of cotton plants (Gossypium hirsutum L. cv. H-777) subjected to waterlogging at vegetative stage, and/or drought at the reproductive stage. In controls, soil moisture contents was kept at field capacity. One day prior to stress, the plant shoots were sprayed with 5 M aqueous solution of indole-3-acetic acid (IAA), gibberellic acid (GA3), benzylaminopurine (BAP), abscisic acid, and ethrel. In control plants, various growth regulators reduced contents of 3-PGA and ATP while increased contents of NADP and pyruvate. During waterlogging IAA promoted 3-PGA content, and BAP enhanced pyruvate content. During drought, GA3 enhanced ATP and 3-PGA contents, while IAA enhanced pyruvate content.  相似文献   

18.
New oligonucleotide probes were designed and evaluated for application in fluorescence in situ hybridization (FISH) studies on (hyper)thermophilic microbial communities—Arglo32, Tcoc164, and Aqui1197 target the 16S rRNA of Archaeoglobales, Thermococcales, and Aquificales, respectively. Both sequence information and experimental evaluation showed high coverage and specificity of all three probes. The signal intensity of Aqui1197 was improved by addition of a newly designed, unlabeled helper oligonucleotide, hAqui1045. It was shown that in addition to its function as a probe for Aquificales, Aqui1197 is suitable as a supplementary probe to extend the coverage of the domain-specific bacterial probe EUB338. In sediments from two hydrothermal seeps on Vulcano Island, Italy, the microbial community structure was analyzed by FISH with both established and the new oligonucleotide probes, showing the applicability of Arglo32, Tcoc164, and Aqui1197/hAqui1045 to natural samples. At both sites, all major groups of (hyper)thermophiles, except for methanogens, were detected: Crenarchaeota (19%, 16%), Thermococcales (14%, 22%), Archaeoglobales (14%, 12%), Aquificales (5%, 8%), Thermotoga/Thermosipho spp. (12%, 9%), Thermus sp. (12%, none), and thermophilic Bacillus sp. (12%, 8%).  相似文献   

19.
Significance of bacterial ectoenzymes in aquatic environments   总被引:5,自引:0,他引:5  
Chróst  R. J. 《Hydrobiologia》1992,(1):61-70
The report presents studies on temporal and spatial variations of kinetics (Vmax and Km) of bacterial ectoenzyme activity (-glucosidase - Glc, leucine aminopeptidase - Leu-amp) in the naturally eutrophic Plusee. Glc and Leu-amp activity were positively correlated with the flux of polymeric materials (polysaccharides, proteins) in the lake. Glc activity was low when algal populations grew actively, but during the algal bloom breakdown Glc activity increased rapidly. Leu-amp displayed the highest rates of activity in the epilimnion and was tightly coupled to bacterial production. The synthesis of studied ectoenzymes was under control of a repression/derepression mechanism. The significance of ectoenzymes for the transformation and bacterial utilization of organic matter, and their role in the microbial loop in aquatic environments is discussed.  相似文献   

20.
In the hydrogen peroxide (H2O2) apoptosis model of the murine thymocyte, redox reactant and antioxidant pyruvate prevents programmed cell death. We tested the hypothesis that such protection was mediated, at least in part, via pyruvate handling by mitochondrial metabolism. Cultured bovine pulmonary artery endothelial cells were incubated for 30 min with 0.5 mM H2O2 in the absence and presence of 0.5 mM -cyano-3-hydroxycinnamate, as a selective inhibitor of the mitochondrial pyruvate transporter. In controls H2O2 decreased cell viability by 30% within 24 h; this was associated with apoptosis-like bodies, nuclear condensation, and biochemical DNA damage consistent with programmed cell death. Pyruvate (0.1–20 mM) enhanced cell viability in a dose-dependent manner, with 85% viable cells at 3 mM and no DNA laddering, no positive nick-end labeling (TUNEL), and no detectable Annexin V or propidium iodide staining. In contrast, using 5 mM L-lactate as a cytosolic reductant or acetate as a redox-neutral substrate, cell death increased to 40%, which was associated with intense DNA laddering, positive TUNEL and Hoechst 33258 assays. -Cyano-3-hydroxycinnamate alone did not significantly decrease endothelial viability but reduced viability from 85 ± 3 to 71 ± 4% (p = 0.023) in presence of 3 mM pyruvate plus H2O2; pathological cell morphology and DNA laddering under the same conditions suggested loss of pyruvate protection against apoptosis. Since -cyano-3-hydroxycinnamate re-distributed medium pyruvate and L-lactate consistent with selective blockade of pyruvate uptake into the mitochondria, the findings support the hypothesis that pyruvate protection against H2O2 apoptosis is mediated in part via the mitochondrial matrix compartment. Possible mediators include anti-apoptotic bcl-2 and/or products of mitochondrial pyruvate metabolism such as citrate that affect metabolic regulation and anti-oxidant status in the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号