首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To evaluate the role of mitogen-activated protein (MAP) kinase and other signaling pathways in neuronal cell differentiation by basic fibroblast-derived growth factor (bFGF), we used a conditionally immortalized cell line from rat hippocampal neurons (H19-7). Previous studies have shown that activation of MAP kinase kinase (MEK) is insufficient to induce neuronal differentiation of H19-7 cells. To test the requirement for MEK and MAP kinase (ERK1 and ERK2), H19-7 cells were treated with the MEK inhibitor PD098059. Although the MEK inhibitor blocked the induction of differentiation by constitutively activated Raf, the H19-7 cells still underwent differentiation by bFGF. These results suggest that an alternative pathway is utilized by bFGF for differentiation of the hippocampal neuronal cells. Expression in the H19-7 cells of a dominant-negative Ras (N17-Ras) or Raf (C4-Raf) blocked differentiation by bFGF, suggesting that Ras and probably Raf are required. Expression of dominant-negative Src (pcSrc295Arg) or microinjection of an anti-Src antibody blocked differentiation by bFGF in H19-7 cells, indicating that bFGF also signals through a Src kinase-mediated pathway. Although neither constitutively activated MEK (MEK-2E) nor v-Src was sufficient individually to differentiate the H19-7 cells, coexpression of constitutively activated MEK and v-Src induced neurite outgrowth. These results suggest that (i) activation of MAP kinase (ERK1 and ERK2) is neither necessary nor sufficient for differentiation by bFGF; (ii) activation of Src kinases is necessary but not sufficient for differentiation by bFGF; and (iii) differentiation of H19-7 neuronal cells by bFGF requires at least two signaling pathways activated by Ras and Src.  相似文献   

3.
In several neuronal cell systems, fibroblast-derived growth factor (FGF) and nerve growth factor (NGF) act as neurogenic agents, whereas epidermal growth factor (EGF) acts as a mitogen. The mechanisms responsible for these different cellular fates are unclear. We report here that although FGF, NGF, and EGF all activate mitogen-activated protein (MAP) kinase (extracellular signal-related kinase [ERK]) in rat hippocampal (H19-7) and pheochromocytoma (PC12) cells, the activation of ERK by the neurogenic agents FGF and NGF is dependent upon protein kinase Cdelta (PKCdelta), whereas ERK activation in response to the mitogenic EGF is independent of PKCdelta. Antisense PKCdelta oligonucleotides or the PKCdelta-specific inhibitor rottlerin inhibited FGF- and NGF-induced, but not EGF-induced, ERK activation. In contrast, EGF-induced ERK activation was inhibited by the phosphatidylinositol-3-kinase inhibitor wortmannin, which had no effect upon FGF-induced ERK activation. Rottlerin also inhibited the activation of MAP kinase kinase (MEK) in response to activated Raf, but had no effect upon c-Raf activity or ERK activation by activated MEK. These results indicate that PKCdelta functions either downstream from or in parallel with c-Raf, but upstream of MEK. Inhibition of PKCdelta also blocked neurite outgrowth induced by FGF and NGF in PC12 cells and by activated Raf in H19-7 cells, indicating a role for PKCdelta in the neurogenic effects of FGF, NGF, and Raf. Interestingly, the PKCdelta requirement is apparently cell type specific, since FGF-induced ERK activation was independent of PKCdelta in NIH 3T3 murine fibroblasts, in which FGF is a mitogen. These data demonstrate that PKCdelta contributes to growth factor specificity and response in neuronal cells and may also promote cell-type-specific differences in growth factor signaling.  相似文献   

4.
Huang X  Zhao T  Zhao H  Xiong L  Liu ZH  Wu LY  Zhu LL  Fan M 《生理学报》2008,60(3):437-441
本文旨在探讨细胞外信号调节激酶(extracellular signal-regulated kinase 1/2, ERK1/2)对小鼠神经干细胞增殖的影响.分离E14.5小鼠皮层神经干细胞,通过Western blot检测神经干细胞增殖过程中磷酸化ERK1/2的表达情况,以及不同浓度PD98059处理对神经干细胞ERK1/2磷酸化及神经球形成的影响,并用CCK-8法检测PD98059对神经干细胞增殖的影响.结果显示:ERK1/2在体外培养的神经下细胞增殖过程中被激活;PD98059显著抑制ERK1/2磷酸化及神经干细胞的成球率,且存在剂量效应依赖关系;加入PD98059后神经干细胞的生长被抑制.以上结果表明,ERK1/2在小鼠神经干细胞增殖中具有重要的作用,阻断ERK1/2信号通路后可抑制神经干细胞的增殖.  相似文献   

5.
6.
7.
8.
Stimulation of osteoblast survival signals may be an important mechanism of regulating bone anabolism. Protein kinase B (PKB/Akt), a serine-threonine protein kinase, is a critical regulator of normal cell growth, cell cycle progression, and cell survival. In this study we have investigated the signaling pathways activated by growth factors PDGF-BB, EGF, and FGF-2 and determined whether PDGF-BB, EGF, and FGF-2 activated Akt in human or mouse osteoblastic cells. The results demonstrated that both ERK1 and ERK2 were activated by FGF-2 and PDGF-BB. Activation of ERK1 and ERK2 by PDGF-BB and FGF-2 was inhibited by PD 098059 (100 microM), a specific inhibitor of MEK. Wortmannin (500 nM), a specific inhibitor of phosphatidylinositol 3-kinase ( PI 3-K), inhibited the activation of ERK1 and ERK2 by PDGF-BB but not by FGF-2 suggesting that PI 3-K mediated the activation of ERK MAPK pathway by PDGF-BB but not by FGF-2. Rapamycin, an inhibitor of p70 S6 protein kinase and a downstream target of ERK1/2 and PI 3-K, did not affect the activation of ERK1 and ERK2 by the growth factors. Furthermore, our results demonstrated that Akt, a downstream target of PI 3-K, was activated by PDGF-BB but not by FGF-2. Akt activation by PDGF-BB was inhibited by PI 3-kinase inhibitor LY294002. Rapamycin had no effect on Akt activation. Epidermal growth factor (EGF) also activated Akt in osteoblastic cells which was inhibited by LY294002 but not by rapamycin. Taken together, our data for the first time revealed that the activation of ERK1/2 by PDGF-BB is mediated by PI 3-K, and secondly, Akt is activated by PDGF-BB and EGF but not by FGF-2 in human and mouse osteoblastic cells. These results are of critical importance in understanding the role of these growth factors in apoptosis and cell survival. PDGF-BB and EGF but not FGF-2 may stimulate osteoblast cell survival.  相似文献   

9.
In cerebellar granule cells, the mitogen-activated protein kinase (MAPK) or extracellular signal-regulated kinase (ERK) cascade mediates multiple functions, including proliferation, differentiation, and survival. In these cells, ERKs are activated by diverse stimuli, including cyclic adenosine monophosphate (cAMP), pituitary adenylate cyclase activating protein (PACAP), depolarization induced by elevated extracellular potassium (KCl), and the neurotrophin brain-derived neurotrophic factor. Extensive studies in neuronal cell lines have implicated the small G proteins Ras and Rap1 in the activation of ERKs by cAMP, PACAP, and KCl. However, the requirement of Ras and Rap1 in these pathways in cerebellar granule cells has not been addressed. In this study, we utilize multiple biochemical assays to determine the mechanisms of action and requirement of Ras and Rap1 in cultured cerebellar granule cells. We show that both Ras and Rap1 can be activated by cAMP or PACAP via protein kinase (PKA)-dependent mechanisms. KCl activation of Ras also required PKA. Using both adenoviral and transgenic approaches, we show that Ras plays a major role in ERK activation by cAMP, PACAP, and KCl, while Rap1 also mediates activation of a selective membrane-associated pool of ERKs. Furthermore, Rap1, but not Ras, activation by PKA appears to require the action of Src family kinases.  相似文献   

10.
The extracellular signal-regulated kinase 5 (ERK5) is activated in neurons of the central nervous system by neurotrophins including brain-derived neurotrophic factor (BDNF). Although MEK5 is known to mediate BDNF stimulation of ERK5 in central nervous system neurons, other upstream signaling components have not been identified. Here, we report that BDNF induces a sustained activation of ERK5 in rat cortical neurons and activates Rap1, a small GTPase, as well as MEKK2, a MEK5 kinase. Our data indicate that activation of Rap1 or MEKK2 is sufficient to stimulate ERK5, whereas inhibition of either Rap1 or MEKK2 attenuates BDNF activation of ERK5. Furthermore, BDNF stimulation of MEKK2 is regulated by Rap1. Our evidence also indicates that Ras and MEKK3, a MEK5 kinase in non-neuronal cells, do not play a significant role in BDNF activation of ERK5. This study identifies Rap1 and MEKK2 as critical upstream signaling molecules mediating BDNF stimulation of ERK5 in central nervous system neurons.  相似文献   

11.
Embryonic stem (ES) cells represent an ideal source for cell engraftment in the damaged central nervous system (CNS). Understanding key signals that control ES cell differentiation may improve cell type-specific differentiation that is suitable for transplantation therapy. We tested the hypothesis that extracellular signal-regulated kinase (ERK) 1/2 phosphorylation is an early signaling event required for the neuronal differentiation of ES cells. Cultured mouse ES cells were treated with an all-trans-retinoic-acid (RA) protocol to generate neurally induced progenitor cells. Western blot analysis showed a dramatic increase in ERK 1/2 phosphorylation (p-ERK 1/2) 1-5 days after RA induction, which was attenuated in the presence of the p-ERK 1/2-specific inhibitor UO126. Phospho-ERK 1/2 inhibition significantly reduced the number of NeuN-positive cells and the expression of associated cytoskeletal proteins. In differentiating ES cells, there was increased nuclear translocation of STAT3 and decreased protein expression levels of GDNF, BDNF and NGF. STAT3 translocation was attenuated by UO126. Finally, caspase-3 activation was observed in the presence of UO126, suggesting that the ERK pathway also contributes to the survival of differentiating ES cells. These data indicate that ERK 1/2 phosphorylation is a key event required for early neuronal differentiation and survival of ES cells.  相似文献   

12.
Midkine (MK) is a new member of the heparin-binding neurotrophic factor family. MK plays important roles in development and carcinogenesis and has several important biological effects, including promotion of neurite extension and neuronal survival. However, the mechanism by which MK exerts its neurotrophic actions on neurons has not been elucidated to date. We have established an apoptosis induction system by serum deprivation in primary neuronal cultures isolated from mouse cerebral cortices. Neuronal apoptosis induced by serum deprivation was accompanied by the activation of caspase-3. MK, when added into the culture medium, inhibited the induction of apoptosis and activation of caspase-3 in a dose-dependent manner. Extracellular signal-regulated kinase (ERK) and Akt were not activated by serum deprivation, whereas ERK and Akt were rapidly activated by addition of MK. In addition, the trophic actions of MK of suppressing apoptosis and suppressing the activation of caspase-3 were abolished by concomitant treatment with PD98059, a specific inhibitor of mitogen-activated protein kinase kinase, and with wort-mannin or LY294002, specific inhibitors of phosphatidyl-inositol 3-kinase (PI 3-kinase). These PI 3-kinase inhibitors also inhibited the activation of ERK in response to MK, demonstrating a link between ERK and the caspase-3 pathway that is modulated by the PI 3-kinase activation. These results indicate that the ERK cascade plays a central role in MK-mediated neuronal survival via inhibition of caspase-3 activation.  相似文献   

13.
14.
15.
Apoptosis is a form of programmed cell death that plays a pivotal role during development and in the homeostasis of the adult nervous systems. However, mechanisms that regulate neuronal apoptosis are not well defined. Here, we report that brain-derived neurotrophic factor (BDNF) protects cortical neurons against apoptosis induced by camptothecin or serum deprivation and activates the extracellular-signal-regulated kinase (ERK) and the phosphatidylinositol 3-kinase (PI 3-kinase) pathways. Using pharmacological agents and transient transfection with dominant interfering or constitutive active components of the ERK or the PI 3-kinase pathway, we demonstrate that the ERK pathway plays a major role in BDNF neuroprotection against camptothecin. Furthermore, ERK is activated in cortical neurons during camptothecin-induced apoptosis, and inhibition of ERK increases apoptosis. In contrast, the PI 3-kinase pathway is the dominant survival mechanism for serum-dependent survival under normal culture conditions and for BDNF protection against serum withdrawal. These results suggest that the ERK pathway is one of several neuroprotective mechanisms that are activated by stress to counteract death signals in central nervous system neurons. Furthermore, the relative contribution of the ERK and PI 3-kinase pathways to neuronal survival may depend on the type of cellular injury.  相似文献   

16.
BACKGROUND: The loss of beta cells in type 1 diabetes may involve protein kinases because they control cell growth, differentiation, and survival. Previous studies have revealed that GTK, a Src-like protein tyrosine kinase expressed in beta cells (also named Bsk/Iyk), regulates multiple responses including growth and survival of rat insulinoma cells (RINm5F) and differentiation of neuronal PC12 cells. In the present study, we have generated a transgenic mouse expressing a kinase active GTK mutant (GTK-Y504F) under the control of the rat insulin I promoter to establish a role of GTK in beta cells. MATERIALS AND METHODS: Control and GTK-transgenic CBA mice were used for determination of in vivo glucose tolerance and the relative insulin-positive area. Isolated islets from both groups were cultured in the absence and presence of cytokines and insulin secretion, viability and protein expression were assessed. RESULTS: The beta-cell mass of GTK-transgenic mice was increased as a consequence of a larger pancreas and an increased relative beta-cell area. Islets isolated from the transgenic animals exhibited an enhanced glucose-induced insulin release and reduced viability in response to cytokines that could not be explained by higher levels of nitric oxide (NO) compared with control islets. Extracellular signal-regulated kinase (ERK) 1/2, p38 mitogen-activated protein kinase (MAPK), c-Jun NH2-terminal kinase (JNK), and Akt were all activated by cytokines, but GTK-transgenic islets contained higher basal levels of phosphorylated ERK1/2 and lower basal levels of phosphorylated p38 compared with the control islets. The total amount of activated MAPKs was, however, higher in the cytokine-stimulated transgenic islets compared with the control islets due to increased levels of phospho-ERK1/2. Moreover, the proline-rich tyrosine kinase (PYK) 2 (also named RAFTK/CAK beta/CADTK) levels were elevated in response to a 24-hr exposure to cytokines in control islets but not in the GTK-transgenic islets. CONCLUSIONS: These results suggest that although GTK increases the beta-cell mass, it also enhances islet cell death in response to cytokines and may thus be involved in the beta-cell damage in type 1 diabetes.  相似文献   

17.
18.
Extracellular signal-regulated protein kinase 5 (ERK5) is a mitogen-activated protein kinase, specifically activated by MEK5, and involved in the regulation of many cellular functions including proliferation, survival, differentiation and apoptosis. MEK5/ERK5 module is an important element of different signal transduction pathways. The aim of this study was to investigate whether ERK5 participates to the signalling of the multifunctional cytokine TGFbeta, known to play an important role in the regulation of hepatic growth. Here, we reported that ERK5 is phosphorylated and activated by TGFbeta in hepatocytes, with a rapid and sustained kinetic, through a Src-dependent pathway. Moreover, we demonstrated that ERK5 participates to the TGFbeta-induced Snail protein regulation being required for its stabilization. We also found that the functional inactivation of ERK5 impedes the TGFbeta-mediated glycogen synthase kinase-3beta inactivation suggesting this as mechanism responsible for ERK5-mediated Snail stabilization. Thus, results presented in this study uncovered for the first time a role for ERK5 in the TGFbeta-induced cellular responses.  相似文献   

19.
The roles of 3',5'-cyclic adenosine monophosphate (cAMP) and protein kinase A in 5-hydroxytryptamine (5-HT)7 receptor-mediated activation of extracellular-regulated kinase (ERK) were studied in cultured hippocampal neurons and transfected PC12 cells. Activation of ERK by neuronal Gs-coupled receptors has been thought to proceed through a protein kinase A-dependent pathway. In fact we identified coupling of 5-HT7 receptors to activation of adenylyl cyclase and protein kinase A. However, no inhibition of agonist-stimulated ERK activation was found when cells were treated with H-89 and KT5720 at concentrations sufficient to completely inhibit activation of protein kinase A. However, activation of ERK was found to be sensitive to the adenylyl cyclase inhibitor 9-(tetrahydrofuryl)-adenine, suggesting a possible role for a cAMP-guanine nucleotide exchange factor (cAMP-GEF). Co-treatment of cells with 8-(4-chlorophenylthio)-2'-O-methyladenosine 3',5'-cyclic monophosphate, a direct activator of the cAMP-GEFs Epac1 and 2, reversed the inhibition of agonist-stimulated ERK activation induced by adenylyl cyclase inhibition. Additionally, over-expression of Epac1 enhanced 5-HT7 receptor-mediated activation of ERK. These results demonstrate that the activation of ERK mediated by neuronal Gs-coupled receptors can proceed through cAMP-dependent pathways that utilize cAMP-GEFs rather than protein kinase A.  相似文献   

20.
Apoptosis signal-regulating kinase 1 (ASK1) is a ubiquitously expressed mitogen-activated protein kinase kinase kinase that activates the c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase signaling cascades. We report here that expression of constitutively active ASK1 (ASK1DeltaN) induces neurite outgrowth in the rat pheochromocytoma cell line PC12. We found that p38 and to a lesser extent JNK, but not ERK, were activated by the expression of ASK1DeltaN in PC12 cells. ASK1DeltaN-induced neurite outgrowth was strongly inhibited by treatment with the p38 inhibitor SB203580 but not with the MEK inhibitors, suggesting that activation of p38, rather than of ERK, is required for the neurite-inducing activity of ASK1 in PC12 cells. We also observed that ASK1DeltaN induced expression of several neuron-specific proteins and phosphorylation of neurofilament proteins, confirming that PC12 cells differentiated into mature neuronal cells by ASK1. Moreover, ASK1DeltaN-expressing PC12 cells survived in serum-starved condition. ASK1 thus appears to mediate signals leading to both differentiation and survival of PC12 cells. Together with previous reports indicating that ASK1 functions as a pro-apoptotic signaling intermediate, these results suggest that ASK1 has a broad range of biological activities depending on cell types and/or cellular context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号