首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Collagen XIX is an extremely rare extracellular matrix component that localizes to basement membrane zones and is transiently expressed by differentiating muscle cells. Characterization of mice harboring null and structural mutations of the collagen XIX (Col19a1) gene has revealed the critical contribution of this matrix protein to muscle physiology and differentiation. The phenotype includes smooth muscle motor dysfunction and hypertensive sphincter resulting from impaired swallowing-induced, nitric oxide-dependent relaxation of the sphincteric muscle. Muscle dysfunction was correlated with a disorganized matrix and a normal complement of enteric neurons and interstitial cells of Cajal. Mice without collagen XIX exhibit an additional defect, namely impaired smooth-to-skeletal muscle cell conversion in the abdominal segment of the esophagus. This developmental abnormality was accounted for by failed activation of myogenic regulatory factors that normally drive esophageal muscle transdifferentiation. Therefore, these findings identify collagen XIX as the first structural determinant of sphincteric muscle function, and as the first extrinsic factor of skeletal myogenesis in the murine esophagus.  相似文献   

2.
The expression of three microRNAs, miR-1, miR-206 and miR-133 is restricted to skeletal myoblasts and cardiac tissue during embryo development and muscle cell differentiation, which suggests a regulation by muscle regulatory factors (MRFs). Here we show that inhibition of C2C12 muscle cell differentiation by FGFs, which interferes with the activity of MRFs, suppressed the expression of miR-1, miR-206 and miR-133. To further investigate the role of myogenic regulators (MRFs), Myf5, MyoD, Myogenin and MRF4 in the regulation of muscle specific microRNAs we performed gain and loss-of-function experiments in vivo, in chicken and mouse embryos. We found that directed expression of MRFs in the neural tube of chicken embryos induced ectopic expression of miR-1 and miR-206. Conversely, the lack of Myf5 but not of MyoD resulted in a loss of miR-1 and miR-206 expression. Taken together our results demonstrate differential requirements of distinct MRFs for the induction of microRNA gene expression during skeletal myogenesis.  相似文献   

3.
4.
5.
Sonic hedgehog (Shh) has been proposed to function as an inductive and trophic signal that controls development of epaxial musculature in vertebrate embryos. In contrast, development of hypaxial muscles was assumed to occur independently of Shh. We here show that formation of limb muscles was severely affected in two different mouse strains with inactivating mutations of the Shh gene. The limb muscle defect became apparent relatively late and initial stages of hypaxial muscle development were unaffected or only slightly delayed. Micromass cultures and cultures of tissue fragments derived from limbs under different conditions with or without the overlaying ectoderm indicated that Shh is required for the maintenance of the expression of myogenic regulatory factors (MRFs) and, consecutively, for the formation of differentiated limb muscle myotubes. We propose that Shh acts as a survival and proliferation factor for myogenic precursor cells during hypaxial muscle development. Detection of a reduced but significant level of Myf5 expression in the epaxial compartment of somites of Shh homozygous mutant embryos at E9.5 indicated that Shh might be dispensable for the initiation of myogenesis both in hypaxial and epaxial muscles. Our data suggest that Shh acts similarly in both somitic compartments as a survival and proliferation factor and not as a primary inducer of myogenesis.  相似文献   

6.
Chen X  Mao Z  Liu S  Liu H  Wang X  Wu H  Wu Y  Zhao T  Fan W  Li Y  Yew DT  Kindler PM  Li L  He Q  Qian L  Wang X  Fan M 《Molecular biology of the cell》2005,16(7):3140-3151
Ciliary neurotrophic factor (CNTF) is primarily known for its important cellular effects within the nervous system. However, recent studies indicate that its receptor can be highly expressed in denervated skeletal muscle. Here, we investigated the direct effect of CNTF on skeletal myoblasts of adult human. Surprisingly, we found that CNTF induced the myogenic lineage-committed myoblasts at a clonal level to dedifferentiate into multipotent progenitor cells--they not only could proliferate for over 20 passages with the expression absence of myogenic specific factors Myf5 and MyoD, but they were also capable of differentiating into new phenotypes, mainly neurons, glial cells, smooth muscle cells, and adipocytes. These "progenitor cells" retained their myogenic memory and were capable of redifferentiating into myotubes. Furthermore, CNTF could activate the p44/p42 MAPK and down-regulate the expression of myogenic regulatory factors (MRFs). Finally, PD98059, a specific inhibitor of p44/p42 MAPK pathway, was able to abolish the effects of CNTF on both myoblast fate and MRF expression. Our results demonstrate the myogenic lineage-committed human myoblasts can dedifferentiate at a clonal level and CNTF is a novel regulator of skeletal myoblast dedifferentiation via p44/p42 MAPK pathway.  相似文献   

7.
Skeletal muscle in vertebrates is derived from somites, epithelial structures of the paraxial mesoderm, yet many unrelated reports describe the occasional appearance of myogenic cells from tissues of nonsomite origin, suggesting either transdifferentiation or the persistence of a multipotent progenitor. Here, we show that clonable skeletal myogenic cells are present in the embryonic dorsal aorta of mouse embryos. This finding is based on a detailed clonal analysis of different tissue anlagen at various developmental stages. In vitro, these myogenic cells show the same morphology as satellite cells derived from adult skeletal muscle, and express a number of myogenic and endothelial markers. Surprisingly, the latter are also expressed by adult satellite cells. Furthermore, it is possible to clone myogenic cells from limbs of mutant c-Met-/- embryos, which lack appendicular muscles, but have a normal vascular system. Upon transplantation, aorta-derived myogenic cells participate in postnatal muscle growth and regeneration, and fuse with resident satellite cells.The potential of the vascular system to generate skeletal muscle cells may explain observations of nonsomite skeletal myogenesis and raises the possibility that a subset of satellite cells may derive from the vascular system.  相似文献   

8.
9.
Histone deacetylase inhibitors (HDACIs) are known to promote skeletal muscle formation. However, their mechanisms that include effects on the expression of major muscle components such as the dystrophin-associated proteins complex (DAPC) or myogenic regulatory factors (MRFs) remain unknown. In this study, we investigated the effects of HDACIs on skeletal muscle formation using the C2C12 cell culture system. C2C12 myoblasts were exposed to trichostatin A (TSA), one of the most potent HDACIs, and differentiation was subsequently induced. We found that TSA enhances the expression of myosin heavy chain without affecting DAPC expression. In addition, TSA increases the expression of the early MRFs, Myf5 and MEF2, whereas it suppresses the expression of the late MRF, myogenin. Interestingly, TSA also enhances the expression of Id1, Id2, and Id3 (Ids). Ids are myogenic repressors that inhibit myogenic differentiation. These findings suggest that TSA promotes gene expression in proliferation and suppresses it in the differentiation stage of muscle formation. Taken together, our data demonstrate that TSA enhances myogenesis by coordinating the expression of MRFs and myogenic repressors.  相似文献   

10.
We addressed the potential role of cell-laminin interactions during epaxial myotome formation in the mouse embryo. Assembly of the myotomal laminin matrix occurs as epaxial myogenic precursor cells enter the myotome. Most Myf5-positive and myogenin-negative myogenic precursor cells localise near assembled laminin, while myogenin-expressing cells are located either away from this matrix or in areas where it is being assembled. In Myf5(nlacZ/nlacZ) (Myf5-null) embryos, laminin, collagen type IV and perlecan are present extracellularly near myogenic precursor cells, but do not form a basement membrane and cells are not contained in the myotomal compartment. Unlike wild-type myogenic precursor cells, Myf5-null cells do not express the alpha6beta1 integrin, a laminin receptor, suggesting that integrin alpha6beta1-laminin interactions are required for myotomal laminin matrix assembly. Blocking alpha6beta1-laminin binding in cultured wild-type mouse embryo explants resulted in dispersion of Myf5-positive cells, a phenotype also seen in Myf5(nlacZ/nlacZ) embryos. Furthermore, inhibition of alpha6beta1 resulted in an increase in Myf5 protein and ectopic myogenin expression in dermomyotomal cells, suggesting that alpha6beta1-laminin interactions normally repress myogenesis in the dermomyotome. We conclude that Myf5 is required for maintaining alpha6beta1 expression on myogenic precursor cells, and that alpha6beta1 is necessary for myotomal laminin matrix assembly and cell guidance into the myotome. Engagement of laminin by alpha6beta1 also plays a role in maintaining the undifferentiated state of cells in the dermomyotome prior to their entry into the myotome.  相似文献   

11.
12.
Gene targeting has indicated that Myf5 and MyoD are required for myogenic determination because skeletal myoblasts and myofibers are missing in mouse embryos lacking both Myf5 and MyoD. To investigate the fate of Myf5:MyoD-deficient myogenic precursor cells during embryogenesis, we examined the sites of epaxial, hypaxial, and cephalic myogenesis at different developmental stages. In newborn mice, excessive amounts of adipose tissue were found in the place of muscles whose progenitor cells have undergone long-range migrations as mesenchymal cells. Analysis of the expression pattern of Myogenin-lacZ transgene and muscle proteins revealed that myogenic precursor cells were not able to acquire a myogenic fate in the trunk (myotome) nor at sites of MyoD induction in the limb buds. Importantly, the Myf5-dependent precursors, as defined by Myf5(nlacZ)-expression, deficient for both Myf5 and MyoD, were observed early in development to assume nonmuscle fates (e.g., cartilage) and, later in development, to extensively proliferate without cell death. Their fate appeared to significantly differ from the fate of MyoD-dependent precursors, as defined by 258/-2.5lacZ-expression (-20 kb enhancer of MyoD), of which a significant proportion failed to proliferate and underwent apoptosis. Taken together, these data strongly suggest that Myf5 and MyoD regulatory elements respond differentially in different compartments.  相似文献   

13.
Calpeptin inhibits myoblast fusion by inhibiting the activity of calpain. However, the mechanism by which calpeptin inhibits myogenesis is not completely understood. This study examined how calpeptin affects the expression of the myogenic regulatory factors (MRFs) and the phosphorylation of p38 mitogen-activated protein kinase (MAPK) in differentiating C2C12 myoblasts. Consistent with previous reports, calpeptin inhibited the induction of μ-calpain and the formation of myotubes in these cells. In particular, calpeptin inhibited the expression of the early and mid differentiation markers including MyoD, Myf5, myogenin, and MRF4 as well as the expression of the late markers such as troponin T and myosin heavy chain (MyHC). Calpeptin also suppressed the phosphorylation of p38 MAPK in C2C12 cells. SB203580, a specific p38 inhibitor, prevented the expression of the muscle-specific markers and their fusion into myotubes in these cells, which was further accelerated in the presence of calpeptin. These findings suggest that calpeptin inhibits the myogenesis of skeletal muscle cells by down-regulating the MRFs and involving p38 MAPK signaling.  相似文献   

14.
15.
The development of myogenic cells is mainly determined by expression of two myogenic factors, Myf5 and Myod1 (MyoD), which genetically compensate for each other during embryogenesis. Here, we demonstrate by conditional cell ablation in mice that Myf5 determines a distinct myogenic cell population, which also contains some Myod1-positive cells. Ablation of this lineage uncovers the presence of a second autonomous myogenic lineage, which superseded Myf5-dependent myogenic cells and expressed Myod1. By contrast, ablation of myogenin-expressing cells erased virtually all differentiated muscle cells, indicating that some aspects of the myogenic program are shared by most skeletal muscle cells. We conclude that Myf5 and Myod1 define different cell lineages with distinct contributions to muscle precursor cells and differentiated myotubes. Individual myogenic cell lineages seem to substitute for each other within the developing embryo.  相似文献   

16.
17.
18.
Prolonged limb immobilization, which is often the outcome of injury and illness, results in the atrophy of skeletal muscles. The basis of muscle atrophy needs to be better understood in order to allow development of effective countermeasures. The present study focused on determining whether skeletal muscle stem cells, satellite cells, are directly affected by long-term immobilization as well as on investigating the potential of pharmacological and physiological avenues to counterbalance atrophy-induced muscle deterioration. We used external fixation (EF), as a clinically relevant model, to gain insights into the relationships between muscle degenerative and regenerative conditions to the myogenic properties and abundance of bona fide satellite cells. Rats were treated with tetracycline (Tet) through the EF period, or exercise trained on a treadmill for 2 weeks after the cessation of the atrophic stimulus. EF induced muscle mass loss; declined expression of the muscle specific regulatory factors (MRFs) Myf5, MyoD, myogenin, and also of satellite cell numbers and myogenic differentiation aptitude. Tet enhanced the expression of MRFs, but did not prevent the decline of the satellite cell pool. After exercise running, however, muscle mass, satellite cell numbers (enumerated through the entire length of myofibers), and myogenic differentiation aptitude (determined by the lineal identity of clonal cultures of satellite cells) were re-gained to levels prior to EF. Together, our results point to Tet and exercise running as promising and relevant approaches for enhancing muscle recovery after atrophy.  相似文献   

19.
The chemokine-like receptor-1 (CMKLR1) is a G protein-coupled receptor that is activated by chemerin, a secreted plasma leukocyte attractant and adipokine. Previous studies identified that CMKLR1 is expressed in skeletal muscle in a stage-specific fashion during embryogenesis and in adult mice; however, its function in skeletal muscle remains unclear. Based on the established function of CMKLR1 in cell migration and differentiation, we investigated the hypothesis that CMKLR1 regulates the differentiation of myoblasts into myotubes. In C(2)C(12) mouse myoblasts, CMKLR1 expression increased threefold with differentiation into multinucleated myotubes. Decreasing CMKLR1 expression by adenoviral-delivered small-hairpin RNA (shRNA) impaired the differentiation of C(2)C(12) myoblasts into mature myotubes and reduced the mRNA expression of myogenic regulatory factors myogenin and MyoD while increasing Myf5 and Mrf4. At embryonic day 12.5 (E12.5), CMKLR1 knockout (CMKLR1(-/-)) mice appeared developmentally delayed and displayed significantly lower wet weights and a considerably diminished myotomal component of somites as revealed by immunolocalization of myosin heavy chain protein compared with wild-type (CMKLR1(+/+)) mouse embryos. These changes were associated with increased Myf5 and decreased MyoD protein expression in the somites of E12.5 CMKLR1(-/-) mouse embryos. Adult male CMKLR1(-/-) mice had significantly reduced bone-free lean mass and weighed less than the CMKLR1(+/+) mice. We conclude that CMKLR1 is essential for myogenic differentiation of C(2)C(12) cells in vitro, and the CMKLR1 null mice have a subtle skeletal muscle deficit beginning from embryonic life that persists during postnatal life.  相似文献   

20.
The myogenic factors, MyoD, myogenin, Myf5 and MRF4, can activate skeletal muscle differentiation when overexpressed in non-muscular cells. Gene targeting experiments have provided much insight into the in vivo functions of MRF and have defined two functional groups of MRFs. MyoD and Myf5 may be necessary for myoblast determination while myogenin and MRF4 may be required later during differentiation. However, the specific role of these myogenic factors has not been clearly defined during one important stage of myogenesis: the fusion of myoblasts. Using cultured C2C12 mouse muscular cells, the time-course of these proteins was analyzed and a distinct expression pattern in fusing cells was revealed. In an attempt to clarify the role of each of these regulators during myoblast fusion, an antisense strategy using oligonucleotides with phosphorothioate backbone modification was adoped. The results showed that the inhibition of myogenin and Myf5 activity is capable of significantly preventing fusion. Furthermore, the inhibition of MyoD can wholly arrest the engaged fusion process in spite of high endogenous expression of both myogenin and Myf5. Consequently, each MRF seems to have, at this defined step of myogenesis, a specific set of functions that can not be substituted for by the others and therefore may regulate a distinct subset of muscle-specific genes at the onset of fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号