首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nutrients in piggery wastewater with high organic matter, nitrogen (N) and phosphorus (P) content were biologically removed in a sequencing batch reactor (SBR) with anaerobic, aerobic and anoxic stages. The SBR was operated with 3 cycles/day, temperature 30 degrees C, sludge retention time (SRT) 1 day and hydraulic retention time (HRT) 11 days. With a wastewater containing 1500 mg/l ammonium and 144 mg/l phosphate, a removal efficiency of 99.7% for nitrogen and 97.3% for phosphate was obtained. Experiments set up to evaluate the effect of temperature on the process showed that it should be run at temperatures higher than 16 degrees C to obtain good removals (> 95%). Batch tests (ammonia utilization rate, nitrogen utilization rate and oxygen utilization rate) proved to be good tools to evaluate heterotrophic and autotrophic biomass activity. The SBR proved to be a very flexible tool, and was particularly suitable for the treatment of piggery wastewater, characterized by high nutrient content and by frequent changes in composition and therefore affecting process conditions.  相似文献   

2.
Performances of single-stage and two-stage sequencing batch reactor (SBR) systems were investigated for treating dairy wastewater. A single-stage SBR system was tested with 10,000 mg/l chemical oxygen demand (COD) influent at three hydraulic retention times (HRTs) of 1, 2, and 3 days and 20,000 mg/l COD influent at four HRTs of 1, 2, 3, and 4 days. A 1-day HRT was found sufficient for treating 10,000-mg/l COD wastewater, with the removal efficiency of 80.2% COD, 63.4% total solids, 66.2% volatile solids, 75% total Kjeldahl nitrogen, and 38.3% total nitrogen from the liquid effluent. Two-day HRT was believed sufficient for treating 20,000-mg/l COD dairy wastewater if complete ammonia oxidation is not desired. However, 4-day HRT needs to be used for achieving complete ammonia oxidation. A two-stage system consisting of an SBR and a complete-mix biofilm reactor was capable of achieving complete ammonia oxidation and comparable carbon, solids, and nitrogen removal while using at least 1/3 less HRT as compared to the single SBR system.  相似文献   

3.
Lee JK  Choi CK  Lee KH  Yim SB 《Bioresource technology》2008,99(16):7788-7796
This study investigated characteristics of a sequencing batch reactor (SBR) system which was varied with respect to sludge retention time (SRT) (5.9, 8.2, 10.5, 12.2, and 16.2 days). The removal efficiencies of chemical oxygen demand (COD) were more than 90% under all SRT conditions, and the greatest efficiency (92.2%) occurred with a SRT of 16.2 days. As the SRT increased, the denitrification rate per mixed liquor suspended solids (MLSS) during the anoxic(I) period decreased significantly from 166.3 mg NO(X)(-)-N/g MLSS d to 68.8 mg NO(X)(-)-N/g MLSS d. As the SRT increased, the phosphorus removal efficiency decreased from 47.1% (SRT of 5.9 days) to 31.0% for a SRT of 16.2 days, because active phosphate release and uptake occurred under shorter SRT conditions. The mass balance of nitrogen (with respect to nitrogen in the influent) at a SRT of 16.2 days (the highest nitrogen removal efficiency) showed 14.9% of nitrogen was removed in clarified water effluent, 49.7% was removed by the sludge waste process and 33.3% was removed by denitrification. Nitrogen processing was well accounted for in the SBR system as the nitrogen mass balance was close to 100% (97.9%).  相似文献   

4.
Korean food wastes were anaerobically digested to produce volatile fatty acids (VFA) that can be used as a carbon source in biological nutrient removal in a sequential batch reactor (SBR). Acetate, propionate and butyrate were produced at a yield of 379-400 g VFA/kg VS0 (initial volatile solids). The ratio of SCOD (Soluble Chemical Oxygen Demand) of VFA to ammonia nitrogen (N) was in the range of 36.2-36.5 and the ratio of SCOD to phosphorus was between 151 and 162. The removal rate of nitrogen and phosphorus improved from 44% and 37% to 92% and 73%, respectively when the VFA were added to the influent of the Taejon municipal wastewater plant. The concentration of nitrogen and phosphorus were maintained below 3 mg/l and 1 mg/l, respectively. The N- and P-content of the food waste was low enough not to influence the final N- and P-concentrations of the wastewater.  相似文献   

5.
The hydrocarbon-rich green microalga, Botryococcus braunii, was grown on secondarily treated sewage (STS) in a continuous bioreactor system. The algal biomass increased at a sustained rate of 196 mg dry weight/l per week for 1 month. The hydrocarbon content of algae grown on STS (49%) compared well with that of algae grown on an artificial medium. The concentrations of nitrate and phosphate ions in STS decreased from 5.5 to 4.0 mg nitrogen/l and 0.08 to 0.03 mg phosphorus/l, respectively, by algal consumption. STS would thus appear to suffice as an appropriate medium for continuously sustainable growth of B. braunii and the algal consumption of nitrate and phosphate should help in removing these ions from STS.  相似文献   

6.
In this study, the performance of partial nitrification via nitrite and microbial community structure were investigated and compared in two sequencing batch reactors (SBR) with different dissolved oxygen (DO) levels. Both reactors achieved stable partial nitrification with nitrite accumulation ratio of above 95% by using real-time aeration duration control. Compared with high DO (above 3 mg/l on average) SBR, simultaneous nitrification and denitrification (SND) via nitrite was carried out in low DO (0.4–0.8 mg/l) SBR. The average efficiencies of SND in high DO and low DO reactor were 7.7% and 44.9%, and the specific SND rates were 0.20 and 0.83 mg N/(mg MLSS h), respectively. Low DO did not produce sludge with poorer settling properties but attained lower turbidities of the effluent than high DO. Fluorescence in situ hybridization (FISH) analysis in both the reactors showed that ammonia-oxidizing bacteria (AOB) were the dominant nitrifying bacteria and nitrite-oxidizing bacteria (NOB) did not be recovered in spite of exposing nitrifying sludge to high DO. The morphology of the sludge from both two reactors according to scanning electron microscope indicated that small rod-shaped and spherical clusters were dominant, although filamentous bacteria and few long rod-shaped coexisted in the low DO reactor. By selecting properly DO level and adopting process control method is not only of benefit to the achievement of novel biological nitrogen removal technology, but also favorable to sludge population optimization.  相似文献   

7.
Bio-sludge from a wastewater treatment plant could be used as an adsorbent of vat dye from textile wastewater. Resting bio-sludge gave a higher adsorption capacity than dead bio-sludge. The resting bio-sludge from a textile wastewater treatment plant gave relatively high COD, BOD5 and dye adsorption capacity of 364.4 +/- 4.3, 178.0 +/- 9.0 and 50.5 +/- 1.3 mg/g of bio-sludge, respectively, in synthetic textile wastewater containing 40 mg/l Vat Yellow 1. Another advantage of the bio-sludge was that, after washing with 0.1 N NaOH solution, it was reusable without any activity loss. Through treatment with a sequencing batch reactor (SBR) system, both organic and dye in STIWW could be removed. The maximum dye (Vat Yellow 1), COD, BOD5 and TKN removal efficiencies of the SBR system under an MLSS of 2000 mg/l and an HRT of three days were 98.5 +/- 1.0%, 96.9 +/- 0.7%, 98.6 +/- 0.1% and 93.4 +/- 1.3%, respectively. Although, the dye and organic removal efficiencies of the SBR system with real textile wastewater were quite low, they could be increased by adding organic matters, especially glucose. The dye, COD, BOD5 and TKN removal efficiencies of the SBR system with glucose (0.89 g/l) supplemented textile industrial wastewater were 75.12 +/- 1.2%, 70.61 +/- 3.4%, 96.7 +/- 0.0%, and 63.2 +/- 1.1%, respectively.  相似文献   

8.
COD, nitrogen, phosphate and para-chlorophenol (4-chlorophenol, 4-CP) removal from synthetic wastewater was investigated using a four-step sequencing batch reactor (SBR) at different sludge ages and initial para-chlorophenol (4-CP) concentrations. The nutrient removal process consisted of anaerobic, oxic, anoxic and oxic phases with hydraulic residence times (HRT) of 1/3/1/1 h and a settling phase of 0.75 h. A Box-Wilson statistical experiment design was used considering the sludge age (5-25 days) and 4-CP concentration (0-400 mg l(-1)) as independent variables. Variations of percent COD, NH4-N, PO4-P and 4-CP removals with sludge age and initial 4-CP concentration were investigated. Percent nutrient removals increased with increasing sludge age and decreasing 4-CP concentrations. Low nutrient removals were obtained at high initial 4-CP concentrations especially at low sludge ages. However, high sludge ages partially overcome the adverse effects of 4-CP and resulted in high nutrient removals. COD, NH4-N, PO4-P and 4-CP removals were 76%, 72%, 26% and 34% at a sludge age of 25 days and initial 4-CP concentration of 200 mg l(-1). Sludge volume index (SVI) also decreased with increasing sludge age and decreasing 4-CP concentrations. An SVI value of 104 ml g(-1) was obtained at a sludge age of 25 days and initial 4-CP of 200 mg l(-1).  相似文献   

9.
In this study, phosphate-accumulating bacteria achieved complete phosphate removal in two different systems: an anaerobic-anoxic sequencing batch reactor and an anaerobic-aerobic sequencing batch reactor. This result shows that phosphate-accumulating bacteria in the A2 SBR can use nitrate as terminal electron acceptor instead of oxygen. Phosphate-accumulating bacteria accumulated phosphate with a rates between 30 and 70 mg P/L/h in the A/O SBR and between 15 and 32 mg P/L/h in the A2 SBR. Twenty denitrifying isolates were screened from A2 SBR and nine from A/O SBR. Identification of these isolates by the Biolog system and the API 20 NE identification kit revealed that the most active denitrifiers in both SBRs reactors were species of Ochrobactrum, Pseudomonas, Corynebacterium, Agrobacterium, Aquaspirillum, Haemophilus, Xanthomonas, Aeromonas, and Shewanella. The most active phosphate accumulating and denitrifying bacteria were identified as Agrobacterium tumefaciens B, Aquaspirillum dispar, and Agrobacterium radiobacter. This study showed that the active phosphate accumulating-bacteria were also the most efficient denitrifying bacteria in both reactors. Received: 24 February 1998 / Accepted: 21 July 1998  相似文献   

10.
A sequencing batch reactor (SBR) was used to remove phosphate in biological wastewater treatment as an alternative to the activated sludge process, in order to improve the low removal efficiency of phosphate and the operational instability. After a cycle of 2 h anaerobic and 4 h aerobic conditions, phosphate removal was optimized. The removal efficiencies of 5 and 50 mg phosphate l–1 by Staphylococcus auricularis under repeated anaerobic and aerobic conditions were above 90%. These results showed that a long adaptation time, one of the major problems in biological phosphate removal process, was overcome by SBR.  相似文献   

11.
Aerobic granular sludge was successfully cultivated with the effluent of internal circulation reactor in a pilot-scale sequencing batch reactor (SBR). Soy protein wastewater was used as an external carbon source for altering the influent chemical oxygen demand/nitrogen (COD/N) ratios of SBR. Initially, the phenomenon of partial nitrification was observed and depressed by increasing the influent COD/N ratios from 3.32 to 7.24 mg/mg. After 90 days of aerobic granulation, the mixed liquor suspended solids concentration of the reactor increased from 2.80 to 7.02 g/L, while the sludge volumetric index decreased from 105.51 to 42.99 mL/g. The diameters of mature aerobic granules vary in the range of 1.2 to 2.0 mm. The reactor showed excellent removal performances for COD and $ {\text{NH}}_4^{ + }{\text{ - N}} $ after aerobic granulation, and average removal efficiencies were over 93% and 98%, respectively. The result of this study could provide further information on the development of aerobic granule-based system for full-scale applications.  相似文献   

12.
Quan ZX  Jin YS  Yin CR  Lee JJ  Lee ST 《Bioresource technology》2005,96(15):1690-1695
Hydrolyzed molasses was evaluated as an alternative carbon source in a biological nitrogen removal process. To increase biodegradability, molasses was acidified before thermohydrolyzation. The denitrification rate was 2.9-3.6 mg N/g VSSh with hydrolyzed molasses, in which the percentage of readily biodegradable substrate was 47.5%. To consider the hydrolysate as a carbon source, a sequencing batch reactor (SBR) was chosen to treat artificial municipal wastewater. During the 14 days (28 cycles) of operation, the SBR using hydrolyzed molasses as a carbon source showed 91.6 +/- 1.6% nitrogen removal, which was higher than that using methanol (85.3 +/- 2.0%). The results show that hydrolyzed molasses can be an economical and effective external carbon source for the nitrogen removal process.  相似文献   

13.
Summary Callus culture ofDioscorea deltoidea produced diosgenin and sterols during stationary phase. Ammonium nitrate (420 mg Nitrogen/l) as sole nitrogen source supported better growth than a combination of ammonium nitrate and potassium nitrate (totally equivalent to 840 mg Nitrogen/l). The production of diosgenin increased under low phosphate concentration (100 mg/l) whereas high phosphate concentration (240 mg/l) promoted growth. Micronutrients, when used at 1 1/2 strength, enhanced growth and diosgenin production. Depletion of nitrogen increased the diosgenin synthesis by a factor of 2. Adoption of a two stage culture method enhanced the diosgenin production in cultured cells by eight-fold.  相似文献   

14.
The present study aimed to elucidate the effect of nutritional alteration on biomass content and azadirachtin production in cell suspensions of the elite neem variety crida-8.Variations in total nitrogen availability in the medium in terms of different ratios of nitrate: ammonium showed that the ratio 4:1 revealed a profound effect, leading to a 1.5-fold increase in the total extracellular azadirachtin production (5.59 mg/l) over the standard MS medium.Reduction in sucrose (15 mg/l) in the medium exhibited a reduction in biomass and absence of azadirachtin, whereas total phosphate reduction raised intracellular azadirachtin production (6.98 mg/l). An altered medium with a nitrate: ammonium ratio of 4:1 coupled with complete elimination of phosphate enhanced biomass by 36% (59.36 g/l).  相似文献   

15.
The potential use of sequencing batch reactors (SBRs) as an alternative bio-flocs technology (BFT) approach in aquaculture was explored. One SBR was dosed with glycerol and one with acetate for the decrease of the nitrogen concentration in simulated aquaculture water by microbial assimilation. At an optimal C/N ratio between 10 and 15, the nitrogen removal efficiency reached up to 98% (=110 mg N L(-1) reactor day(-1)) for both SBRs. The estimated biomass productivity reached 0.62-0.94 g C L(-1)r eactor day(-1) for the glycerol SBR and 0.54-0.82 g C L(-1) reactor day(-1) for the acetate SBR. The floc protein content, indicating biomass quality, reached up to 57% if grown on glycerol. With acetate, it attained a value of 61%. The highest average poly-beta-hydroxybutyrate (PHB) content was 16% on a dry weight basis for the acetate biomass.  相似文献   

16.
17.
18.
Acinetobacter calcoaceticus was cultivated in a well-aerated stirred tank reactor and its phosphate uptake capacity was investigated. Statistical media optimization was done to figure out favourable growth conditions of Acinetobacter calcoaceticus NRRLB-552. Plackett–Burman design was used to figure out the key nutrients (sodium acetate, ammonium chloride and calcium chloride) featuring high growth and/or uptake of phosphate. The optimal concentrations for these nutrients were (sodium acetate 5.0 g/l, ammonium chloride 0.67 g/l, calcium chloride 0.05 g/l) obtained by central composite design (CCD) protocols and verified in shake flask cultivations. Predicted and experimental dry cell weights obtained using the optimized media were 2.046 and 2.54 g/l indicating 97% agreement. The optimal values of pH and temperature for growth and phosphate uptake were found to be 7.69 and 31.86 °C, respectively, using CCD. Batch kinetics was also established in shake flask and fermenter using optimized medium and environmental conditions. Phosphate uptakes of 21 mg/g biomass and 36 mg/g biomass were obtained in shake flask and fermenter, respectively. The possible inhibition of nutrients (carbon, nitrogen and phosphate) was also established under shake flask cultivation conditions. Growth of the bacteria was inhibited at a concentration higher than 0.4% carbon and 0.6% nitrogen. However increasing concentration of phosphate did not show any inhibitory effect on growth. The above kinetics and inhibition data will serve as suitable database for the development of a mathematical model for growth and its use will be able to facilitate appropriate reactor design for the removal of phosphates from industrial effluents.  相似文献   

19.
采用序批式反应器(SBR),对比厌氧/好氧(A/O)和厌氧/缺氧(A/A)2种运行模式对模拟生活和工业混合污水同时脱氮除磷的效能。结果表明:反硝化聚磷菌完全可以在厌氧/缺氧交替运行条件下得到富集,稳定运行的2种模式对有机物和P的去除率分别保持在90%和85%以上,且A/A SBR具有更强的释磷能力,其释磷量比A/O SBR高出1.2倍。进一步试验表明:磷的释放在有无硝酸盐的情况下效果是不同的。2个系统内污泥均有反硝化除磷能力,A/A SBR中所含反硝化聚磷菌(DPAO)的比例是A/O SBR的4.56倍。2种模式出水水质都能取得较好的效果,且能实现同步除磷脱氮,而反硝化除磷在生物除磷方面更具优势。  相似文献   

20.
Oil-oxidizing bacteria were isolated from oil-polluted soil and water samples and identified as Acinetobacter calcoaceticus K-4, Nocardia vaceinii K-8, Rhodococcus erythropolis EK-1, and Mycobacterium sp. K-2. It was found that immobilization of the bacteria on an expanded clay aggregate accelerated their growth and consumption of hydrocarbon substrates. It was also found that water polluted with 100 mg/l oil could be purified with Rhodococcus erythropolis EK-1 and Nocardia vaceinii K-8 cells immobilized in this way. The dependence of the degree of water purification on its flow rate, aeration, and availability of nitrogen and phosphorus sources was determined. The efficiency of water purification from oil by immobilized Rhodococcus erythropolis EK-1 cells at high flow rates (of up to 0.68 l/h), low aeration (of 0.1 l/l per min) and an intermittent supply of 0.01% diammonium phosphate reached 99.5-99.8%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号