首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the mechanism by which LEDGF protects cells against environmental stress. Our earlier report showed that a low level of LEDGF was present in the nucleus of most cell types and significant elevation of LEDGF level was induced by heat and oxidative stress. The cells overexpressing LEDGF-activated expression of heat shock proteins and enhanced survival of many cell types. Here we show that LEDGF binds to heat shock element (HSE) and stress-related regulatory element (STRE) to activate the expression of stress-related genes (Hsp27 and alphaB-crystallin). Apparently, HSE and STRE are present in promoters of many stress-related genes. Elevation of many stress-related proteins (STRPs) induced by LEDGF may protect cells against environmental stress. In yeast, it has been demonstrated that a single stress can activate the expression of multiple STRPs. This is known as "cross-protection," and now similar mechanism has been found in mammalian cells and LEDGF plays a vital role in it.  相似文献   

2.
Antioxidant protein 2 (AOP2), a member of the newly defined family of thiol-specific antioxidant proteins, has been shown to remove H(2)O(2) and protect proteins and DNA from oxidative stress. Here we report that LEDGF is one of the regulatory factors for the AOP2 gene. We found that LEDGF bound to the heat shock element and to stress-related elements in the AOP2 promoter. It trans-activated expression of AOP2-CAT in COS-7 cells and lens epithelial cells overexpressing LEDGF. Mutations in the heat shock element and stress-related elements of the AOP2 promoter reduced LEDGF-dependent trans-activation. Lens epithelial cells showed a higher level of AOP2 mRNA in the presence of LEDGF. Cells overexpressing LEDGF exhibited a higher level of AOP2 protein, the level of which was directly related to the increase in cellular protection. Thus, LEDGF, by activating the AOP2 gene, protected and enhanced the survival of cells under oxidative stress.  相似文献   

3.
4.
5.
6.
7.
In the present study, we have analyzed the role of the molecular chaperone Hsp60 in protection of Saccharomyces cerevisiae against oxidative damage. We constructed mutant strains in which the levels of Hsp60 protein, compared with wild-type cells, were four times greater, and the addition of doxycycline gradually reduces them to 20% of wild-type. Under oxidative-stress conditions, the progressive decrease in Hsp60 levels in these mutants resulted in reduced cell viability and an increase in both cell peroxide species and protein carbonyl content. Protection of Fe/S-containing enzymes from oxidative inactivation was found to be dose-dependent with respect to Hsp60 levels. As these enzymes release their iron ions under oxidative-stress conditions, the intracellular labile iron pool, monitored with calcein, was higher in cells with reduced Hsp60 levels. Consistently, the iron chelator deferoxamine protected low Hsp60-expressing cells from both oxidant-induced death and protein oxidation. These results indicate that the role of Hsp60 in oxidative-stress defense is explained by protection of several Fe/S proteins, which prevent the release of iron ions and thereby avert further damage.  相似文献   

8.
9.
Dissociable antibody microarray (DAMA) staining is a technology that combines protein microarrays with traditional immunostaining techniques. It can simultaneously determine the expression and subcellular location of hundreds of proteins in cultured cells and tissue samples. We developed this technology and demonstrated its application in identifying potential biomarkers for breast cancer. We compared the expression profiles of 312 proteins among three normal breast cell lines and seven breast cancer cell lines and identified 10 differentially expressed proteins by the data analysis program DAMAPEP (DAMA protein expression profiling). Among those proteins, RAIDD, Rb p107, Rb p130, SRF, and Tyk2 were confirmed by Western blot and statistical analysis to have higher expression levels in breast cancer cells than in normal breast cells. These proteins could be potential biomarkers for the diagnosis of breast cancer.  相似文献   

10.
11.
12.
13.
14.
15.
The abundance of 1,25-dihydroxyvitamin D3 receptors (VDR) in cultured cells has been shown to vary in direct relation to the rate of cell proliferation. This study examines the question of whether the growth-factor mediated up-regulation of VDR is due to direct modulation of VDR gene expression or is secondary to the stimulation of cell cycle events. Mitogenic agents, such as basic fibroblast growth factor and phorbol esters, were found to cause significant decreases in VDR abundance, while substantially stimulating proliferation of NIH-3T3 cells. Potent phorbol esters, such as phorbol myristate acetate (PMA) and phorbol-12,13-dibutyrate, whose biological actions have been shown to be mediated through the activation of protein kinase-C, down-regulated VDR in a time- and dose-dependent manner. An inactive phorbol ester, 4 alpha-phorbol-12,13-didecanoate, which does not activate protein kinase-C, did not alter VDR levels. Desensitization of protein kinase-C by prolonged exposure of cells to phorbol esters eliminated the PMA-mediated down-regulation of VDR. Staurosporine, an inhibitor of protein kinase-C, blocked the actions of PMA. Oleoyl acetyl glycerol, a synthetic diacyl glycerol, and A23187, a calcium ionophore, were both able to suppress VDR abundance alone and were additive in combination. The results suggest that activation of the protein kinase-C pathway and elevation of intracellular Ca2+ lead to significant down-regulation of VDR. The inhibitory effect of PMA appears to be exerted at the level of VDR mRNA expression. Northern blot analysis revealed significant decreases in steady state levels of VDR mRNA species that qualitatively corresponded to the decrease in VDR protein concentration seen on a Western blot.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
18.
19.
The most crucial function of plant cell is to respond against stress induced for self-defence. This defence is brought about by alteration in the pattern of gene expression: qualitative and quantitative changes in proteins are the result, leading to modulation of certain metabolic and defensive pathways. Abiotic stresses usually cause protein dysfunction. They have an ability to alter the levels of a number of proteins which may be soluble or structural in nature. Nowadays, in higher plants high-throughput protein identification has been made possible along with improved protein extraction, purification protocols and the development of genomic sequence databases for peptide mass matches. Thus, recent proteome analysis performed in the vegetal Kingdom has provided new dimensions to assess the changes in protein types and their expression levels under abiotic stress. As reported in this review, specific and novel proteins, protein-protein interactions and post-translational modifications have been identified, which play a role in signal transduction, anti-oxidative defence, anti-freezing, heat shock, metal binding etc. However, beside specific proteins production, plants respond to various stresses in a similar manner by producing heat shock proteins (HSPs), indicating a similarity in the plant's adaptive mechanisms; in plants, more than in animals, HSPs protect cells against many stresses. A relationship between ROS and HSP also seems to exist, corroborating the hypothesis that during the course of evolution, plants were able to achieve a high degree of control over ROS toxicity and are now using ROS as signalling molecules to induce HSPs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号