首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The total number of planktonic bacteria in the upper mixed layerof the Bering Sea during the late spring-early summer periodranged between 1 and {small tilde}4 x 106 ml–1 (biomass10–40mg C m–3). In the northern Pacific, along 47–526N,the corresponding characteristics of the bacterioplankton densityin the upper mixed water layer were: total number 1–2x 106 cells ml–1 and biomass 15–46mg C m–3Below the thermocline at 50–100 m, the density of bacterioplanktonrapidly decreased. At 300 m depth, it stabilized at 0.1–0.2x 106 cells ml–1. The integrated biomass of bacterioplanktonin the open Bering Sea ranged between 1.2 and 3.6 g C m–2(wet biomass 6–18 g m–2) Its production per dayvaried from 2 to 23 mg C m–3 days–1 in the upper0–100 m. The numerical abundance of planktonic ciliatesin this layer was estimated to be from 3 to l0 x 103 cells l–1,and in the northern Pacific from 0.4 to 4.5 x 103 l–2.Their populations were dominated by naked forms of Strombidium,Strombilidium and Tontonia. In some shelf areas, up to 40% ofthe total ciliate population was represented by the symbioticciliate Mesodinium rubrum. The data on the integrated biomassof basic groups of planktonic microheterotrophs are also presented,and their importance in the trophic relationships in pelagiccommunities of subarctic seas is discussed.  相似文献   

2.
High-resolution reflectance spectra in the range of 400–850nm were obtained from Lake Kinneret during a period when densepopulations of the dinoflagellate Peridinium gatunense dominatedthe phytoplankton. Chlorophyll (Chl) concentrations ranged from5.1 to 185 mg m–3 and from 2.4 to 187.5 mg m–3 inthe samples of two independent experiments. The most prominentfeatures of the reflectance spectra were: (i) a wide minimumfrom 400 to 500 nm; (ii) a maximum at 550–570 nm, whichdid not surpass 3% in samples with high Chl concentration (>20mgm–3), indicating a strong absorption by pigments in thegreen range of the spectrum; (iii) a minimum at 676 nm; thiswas {small tilde}1% and was almost insensitive to variationin Chl concentration >10 mg m–3; (iv) a maximum reflectanceshowed near 700 nm; its magnitude and position were highly dependenton chlorophyll concentration. High-spectral-resolution datawere used as a guideline for selection of the most suitablespectral bands for chlorophyll remote sensing. Models were devised,based on the calculation of the integrated area above the baselinefrom 670 to 850 nm and the reflectance maximal height withinthis range. Some algorithms already used m previous studieswere tested and showed a plausible degree of accuracy when appliedto the current data base. However, novel models devised in thisstudy improved substantially the accuracy of Chl estimationby remotely sensed data, by reducing the estimation error from>11 to 6.5 mg m–3 Those models were validated by anindependent data set where Chl concentration ranged over twoorders of magnitude. The use of three relatively narrow spectralbands was sufficient for Chl mapping in Lake Kinneret. Therefore,a relatively simple sensor, measuring only a few bands willbe employed in future applications for Chl monitoring in inlandwaters. Radiometric data were also used to simulate radiancesin the channels of TM Landsat and to find the algorithm forChl assessment. The ratio of channel 4 to channel 3 was usedand enabled Chl estimation with an error of <15mg m–3This algorithm was employed to map Chl in the entire area ofLake Kinneret with 10 gradations.  相似文献   

3.
In late summer, production and utilization of carbon in thestratified water of the Middle Atlantic Bight appears to approachsteady-state conditions. In the euphotic zone there is a paniculateorganic carbon (POC) pool of {small tilde}6000 mg Cm–2.Primary production adds {small tilde}350 mg C m–2 d–1,while zooplankton ingestion removes {small tilde}450 mg C m–2d–1, of which {small tilde}135 mg C m–2 d–1are returned to the POC pool as feces. Sinking of POC averages{small tilde}240 mg C m –2 d–1. Thus, there is anet loss from the euphotic zone of {small tilde}200 mg C m–2d–1, which represents a removal rate from the POC poolof {small tilde}3%d–1. However, sinking losses of phytoplanktoncarbon from the POC pool were small ({small tilde}12 mg C m–2d–1), which suggests that most of the primary productionenters the pelagic food chain. This is in sharp contrast tothe conditions in early spring, when the POC pool increasessubstantially, and the main loss is sinking rather than heterotrophicconsumption. *This research was supported by the U.S. Department of Energyunder Contract No. DE-AC02-76CH000I6.  相似文献   

4.
Protoplasts were successfully isolated from internodal callustissues of both Oxalis glaucifolia and O. rhombeo-ovata whenthey were digested in a solution containing 0.1% (w/v) MacerozymeR-10, 0.5% (w/v) cellulase Onozuka R-10 and 0.3 mmol m–3sucrose. Protoplasts proliferated to give cell colonies on Gamborget al.'s B5 medium supplemented with 0.3 mmol m–3 mannitol,0.5 mg dm–32, 4-D, and 2.0 mg dm–3 kinetin. Calluswas produced upon transfer of cell colonies to Murashige andSkoog medium containing 2.0 mg dm–3 l-naphthaleneaceticacid (NAA) and 0.1 mg dm–3 kinetin for O. glaucifolia,or with 5.0 mg dm–3 NAA and 0.5 mg dm–3 6-benzylaminopurine,for O. rhombeo-ovata. Plants were regenerated from O. glaucifoliaprotoplasts on a medium containing 0.1 mg dm–3 NAA, 1.0mg dm–3 kinetin and 1.0 mg dm–3 gibberellic acid,but only vascular nodules were differentiated by O. rhombeo-ovataprotoplast-derived calli. Key words: Tissue culture, protoplasts, plant regeneration, Oxalis spp  相似文献   

5.
The structure of the zooplankton biotic community and of copepodpopulation in the coastal area of Terra Nova Bay (Ross Sea,Antarctica) was investigated during the 10th Italian AntarcticExpedition (1994/1995). Zooplankton biotic community consistedmainly of pteropods (Limacina helicina and Clione antarctica),Cyclopoid (Oithona similis), Poecilostomatoid (Oncaea curvata)and Calanoid (Ctenocalanus vanus, Paraeuchaeta antarctica, Metridiagerlachei and Stephos longipes) copepods, ostracods, larvalpolychaetes and larval euphausiids. Zooplankton abundance rangedfrom 48.1 ind m–3 to 5968.9 ind m–3, and copepodabundance ranged from 45.2 ind m–3 to 3965.3 ind m–3.The highest peak of zooplankton abundance was observed between25 m and the surface and was mainly due to the contributionof O. similis, O. curvata and C. vanus. Zooplankton biomassranged from 5.28 mg m–3 to 13.04 mg m–3 dry weight;the maximum value was observed between 25 m and the surface.Total lipid content varied from 216.44 to 460.73 mg g–1dry weight.  相似文献   

6.
Recent studies indicate that Oithona spp. contribute significantlyto total copepod biomass. Little is known, however, about theirecological significance, particularly in the case of the estuarineOithona nana. A study comprising three sites within SouthamptonWater was conducted to evaluate the late-stage copepodite/adult(stages IV–VI) O. nana community, using 120-µm meshnets. Although present throughout the estuary, there was a strikingspatial gradient with O. nana most common in the upper estuary.A clear seasonal pattern was observed with O. nana as the mostabundant copepod species from late summer until early winter.It comprised 61% of all copepods recorded, with a biomass of757.22 mg C m–3. Production estimates of O. nana werederived from the ‘instantaneous-growth’ approach,using appropriate growth equations. The estimated productionof O. nana ranged from 1.50 mg C m–3 year–1 withinthe lower estuary to 146.77 mg C m–3 year–1 in theupper estuary. In the upper estuary, this compares with productionrates of 187.47 mg C m–3 year–1 for all Acartiacongeners (excluding nauplii), the most common calanoid genus.Throughout the estuary, O. nana annual production represented18% of total copepod production clearly indicating that, atleast in the upper estuary, O. nana production may be directlycomparable with calanoid production.  相似文献   

7.
Seasonal and vertical fluctuations of zooplankton species composition,biomass, and production were monitored by weekly sampling duringa two year period in one eutrophic pond in Central Finland.The study was one part of a more comprehensive study programto investigate the effects of warm water effluents from onesmall thermal power plant (35 MW) on the pond ecosystem. Becauseof the circulation of the pond water through the pumps in thepower plant the crustacean populations were very sparse in planktonduring the seasons the power plant was in operation (late Augustto May). During that time rotifers were dominant and some speciesreached very high densities (e.g., Keratella cochlearis s.l.ca. 15 000 ind. l–1 in sping). In summer months Asplanchnapriodonta, Ceriodaphnia quadrangula, Bosmina longirostris, Mesocyclopsleuckarti and Thermocyclops oithonoides were dominant. A totalof 96 planktonic and meroplanktonic taxa were identified (26ciliates, 46 rotifers, 21 cladocerans and 3 copepods). The dryweight biomass of total zooplankton was 10 mg m–3 in wintermonths, 10–100 mg m–3 in spring and 300–1000mg m–3 in summer. The total yearly production of zooplanktonwas 8552 mg dry wt m–3 a–1 in 1979 and 8440 mg drywt m–3 a–1 in 1980, from which the proportion ofrotifers was 33–39%, cladocerans 52–58% and copepods8.6 –9.4%. The winter production was 0.2–0.5% ofthe total yearly production, that of spring and autumn togetherwas 8.1–10.4% and the remainder (89–91%) was summerproduction.  相似文献   

8.
Results are presented of size-fractionated primary productionstudies conducted in the vicinity of the Subtropical Front (STF),an adjacent warm-core eddy, and in Sub-antarctic waters duringthe third South African Antarctic Marine Ecosystem Study (SAAMESIII) in austral winter (June/July) 1993. Throughout the investigation,total chlorophyll (Chl a) biomass and production were dominatedby small nano- and picophytoplankton. No distinct patterns intotal Chl a were evident. At stations (n = 7) occupied in thevicinity of the STF, total integrated biomass values rangedfrom 31 to 53 mg Chl a m–2. In the vicinity of the eddy,integrated biomass at the eddy edge (n = 3) ranged from 24 to54 mg Chl a m–2 and from 32 to 43 mg Chl a m–2 inthe eddy (n = 2). At the station occupied in the Sub-antarcticwaters, total integrated biomass was 43 mg Chl a m–2.Total daily integrated production was highest at stations occupiedin the vicinity of the STF and at the eddy edge. Here, totalintegrated production ranged from 150 to 423 mg C m–2day–1 and from 244 to 326mg C m–2 day–1, respectively.In the eddy centre, total integrated production varied between134 and 156 mg C m–2 day–1. At the station occupiedin the Sub-antarctic waters, the lowest integrated production(141 mg C m–2 day–1) during the entire survey wasrecorded. Availability of macronutrients did not appear to limittotal production. However, the low silicate concentrations duringthe survey may account for the predominance of small nano- andpicophytoplankton. Differences in production rates between theeddy edge and eddy core were related to water column stability.In contrast, at stations occupied in the vicinity of the STF,the control of phytoplankton production appears to be relatedto several processes, including water column stability and,possibly, iron availability.  相似文献   

9.
The growth rate of a population of Euphausia lucens from thewest coast of South Africa was estimated from laboratory studiesand from monthly size-frequency distributions of samples collectedover a 1-year period. Laboratory studies indicated that growthrates ranged from 0.131 (larvae) to 0.047 mm day–1 (juveniles),while size-frequency distributions suggested a growth rate of{small tilde}0.026 mm day–1 for the adults. The mean annualbiomass from the inshore, intermediate and offshore regionsranged from 9.75 to 47.29 mg dry wt m–3 with the highestbiomass being found in the inshore region. Calyptopis larvaewere present for most months of the year, indicating continuousrecrwtment. The relative contribution of flesh, moults and eggsto the total annual production was estimated separately forall three regions. Production due to growth (Pg) was estimatedto be 92.71–185.60 mg dry wt m–3 year–1, whileexuviai production (Pe) varied between 60.01 and 281.38 mg drywt m year Production of eggs (Pr) was estimated to range from5.07 to 12.39 mg dry wt m year the lowest value being obtainedin the inshore region. Moult production represented {small tilde}6times the mean biomass in each region, while the P/B ratio forflesh production varied from 3.92 to 8.91, the highest ratiobeing obtained in the offshore region. Total P/B ratios rangedfrom 10.14 to 16.01.  相似文献   

10.
The distinct patterns of stratification in the North Channeland stratified region of the western Irish Sea influence theseasonal abundance of phytoplankton. The 3–4 month productionseason in the stratified region was characterized by productionand biomass peaks in the spring (up to 2378 mg C m2 day–1and 178.4 mg chlorophyll m–2) and autumn (up to 1280 mgC m–2 day–1 and 101.9 mg chlorophyll m–2).Phytoplankton in the North Channel exhibited a short, late productionseason with a single summer (June/July) peak in production (4483mg Cm–2 day–1) and biomass (–160.6 mg chlorophyllm–2). These differences have little influence on copepoddynamics. Both regions supported recurrent annual cycles ofcopepod abundance with similar seasonal maxima (182.8–241.8103ind. m–2) and dominant species (Pseudocalanus elongatusand Acartia clausi). Specific rates of population increase inthe spring were 0.071 and 0.048 day1 for the North Channel andstratified region, respectively. Increased copepod abundancein the stratified region coincided with the spring bloom, andwas significantly correlated with chlorophyll standing stock.Increased copepod abundance preceded the summer production peakin the North Channel. This increase was not correlated withchlorophyll standing crop, suggesting that a food resource otherthan phytoplankton may be responsible for the onset of copepodproduction prior to the spring bloom. Hetero-trophic microplanktonas an alternative food source, and advection of copepods fromthe stratified region, are proposed as possible explanationsfor copepod abundance increasing in advance of the summer peakin primary production.  相似文献   

11.
Biomass and productivity of microplankton were measured in theCraternaya Bay (Kurile Islands), which is influenced by hydrothermalactivity and volcanic heating. The hydrothermal fields are situatedaround its shores and underwater within the 0–20 m depth.A dense ‘bloom’ of photoautotrophic microplanktonwas observed there, dominated by diatoms, phytoflagellates andthe symbiont-containing ciliate Mesodinium rubrum. The biomassof these ciliates attained 3–11 g m-3 in the upper waterlayer. The total biomass of the phototrophic microplankton reached30–46 g m-3. The primary production in the water columnwas, correspondingly, enormously high: 6–10 g C m-2 day-1.The depth of the euphotic zone was 7 m. Pelagic photosynthesiswas inhibited in the upper 0–1 m by the spreading of alayer of low-salinity hydrothermal water. The numerical densityof bacterioplankton in the upper zone of the water column variedfrom 1 x 106 to 2.9 x 106 cells ml-1, and its wet biomass from250 to 750 mg m-3. Its production varied at stations from 70to 390 mg m-3 day-1. Chemosynthesis contributed up to 30% ofthis production in the sites neighbouring the hydrothermal vents.Outside their direct impact however, its share was negligible.The biomass of heterotrophic planktonic ciliates varied from30 to 270 mg m-3. The mechanisms of possible influence of shallowvolcanic activity on development and function of microplanktonin the Craternaya Bay is discussed.  相似文献   

12.
The Undulating Oceanographic Recorder (UOR) Mark 2 is a self-containedoceanographic sampler which can be towed from research vesselsand merchant ships at speeds up to 13.5 m. s–1 (26 knots).It can be launched and recovered by non-scientist crew-memberswhile the vessel is undeT way. It is used to carry instrumentationto sample plankton continuously and to measure chlorophyll (range0 to 100mg.m–3), radiant energy (range 0 to 1000µE.m–2.s–1)temperature (range 0 to 30°C) and salinity (range 32 to37°/00), all of which are recorded, with the measurementof depth (range 0 to 100 m), by a miniature digital tape recorder,with a resolution of 0.1 %of full scale. The UOR Mark 2 hasa towing speed range of 4 to 13.5 m.s–1 and it undulatesfrom the surface to depths of 55 m (at 4 m.s–1) and 36m (at 10 m.s–1) with 150 m of unfaired 8 mm od steel cablein water; the undulation length is pre-set between 800 and 4000m. Used from a research ship, with 330 m of faired cable itreaches a depth of 240 m at a speed of 4 m.s–1. When towedwith a conductor-cored steel cable, the vehicle can be controlledfrom the towing vessel and the data from the sensor measurementsdisplayed on-board in real-time.  相似文献   

13.
Community respiration (R) was determined in Bransfield Straitfrom oxygen changes in water samples incubated in borosilicatebottles maintained at in situ temperature. The respiratory electrontransport system (ETS) activity of seawater communities wasalso measured from the same samples. Both data sets were relatedby the regression equation: log R (mg O2 m–3 day–1)=0.462+0.730xlogETS activity mg O2 m–3 day–1) (r=0.80, n=23). Fromthis equation and 37 ETS activity depth profiles, we calculatedthe integrated (0–100 m) community respiration as beingin the range 1.2–4.5 g O2 m–2 day–1 (mean=2.2).These values do not differ significantly from other publishedresults for the Arctic and Antarctic Oceans. Assuming a respiratoryquotient of unity, the areal respiration ranges between 0.45and 1.69 g C m–2 day–1 (mean=0.8). This would representan important sink for the primary production reported for BransStrait. The spatial distribution of community respiration showedhigher values associated with the warmer and phytoplankton-richwaters outflowing from Gerlache Strait into Bransfield Strait,and with the front that separates Bellingshausen Sea watersfrom Weddell Sea waters. We suggest that this pattern of distributionmay be related to the transport of organic matter by the BransfieldCurrent along the front.  相似文献   

14.
The prospect of estimating primary production (II, mg C m–2d–1)from chlorophyll pigment concentrations (Ck, mg m–3 nearthe ocean surface is appealing, now that chlorophyll concentrationscan be extracted from satellite images. Earlier work has showna proportionality between II and Ck (II  相似文献   

15.
Uniculm barley plants were grown in 8 h photoperiods at a quantumflux density of 655 µE m–2 s–1. Groups ofplants were transferred to four different light environmentsfor one 8 h photoperiod (106, 270, 665, and 975 µE m–2s–1) and harvested at intervals throughout the succeedingdark period for subsequent carbohydrate analysis of the youngestmature leaf. Sucrose was the predominant carbohydrate in the leaves (attaininga level of c. 100 mg dm–2 after 8 h at 975 µE m–2s–1) but starch was also of significance (20 mg dm–2after 8 h at 975 µE m–2 s–1). During the dark period, following a photoperiod at the threehighest light levels (270, 665, and 975 µE m–2 s–1),sucrose was exported first while the starch level remained fairlyconstant. When the-sucrose level fell to 15–20 mg dm–2starch degradation began. This critical sucrose level was reachedearlier in those plants subjected to lower quantum flux densitiesduring the preceding photoperiod. The delay in the remobilizationof starch suggests an important regulatory mechanism which maybe dependent upon the sucrose level. At 106 µE m–2s–1 the sucrose level rose to only 10 mg dm–2. Herethere was no discernible delay in the depletion of sucrose orstarch.  相似文献   

16.
Microplankton and primary production in the Sea of Okhotsk in summer 1994   总被引:1,自引:0,他引:1  
Phytoplankton composition, density, vertical distribution andprimary production were investigated in the Sea of Okhotsk andin the adjacent northern north Pacific in July–August1994, together with measurements of density and distributionof planktonic microheterotrophs: bacteria, nanoheterotrophsand ciliates. Different phases of phytoplankton seasonal successionwere encountered during the period of investigation in variousregions of this sea. Primary production measured at 144 stationswas found to be greatest (1.5–4 g C m-2day-1) in areasof spring-phase succession along the Sakhalin shelf and theKashevarov bank. Periodic relapses of the spring blooms of ‘heavy’diatoms during the whole growth season were recorded over thisbank. The summer phase of the phytoplankton minimum prevailedin the central and eastern parts of the sea, manifested by thedominance of nanoflagellates in terms of phytoplankton biomass.Primary production was 0.5–1 g C m-2 day-1. The earlyautumn phase of succession was typical of the Kurile straitarea and the adjacent north Pacific. Primary production therevaried from 0.7 to 2 g C m-2 day-1. The integrated phytoplanktonbiomass in the water column varied from 9–12 g m-2 inzones supporting the summer minimum assemblage to 15–20g m-2 in zones of early autumn recovery of phytoplankton growth,and up to 40–70 g m-2 in areas of remnant or relapseddiatom blooms. The numerical density of bacterioplankton wasbetween 1 x 106 and 3 x 106 cells ml-1 and its wet biomass wasbetween 100 and 370 mg m-3. In deep waters it was 8–15mg m-3. The integrated bacterioplankton biomass in the upperwater column varied from 6 to 29 g m-2. The numerical densityof zooflagellates varied in the upper layer between 0.8 x 106and 4 x 106 l-1 and their biomass was between 20 and 50 mg m-3.In deep waters they were still present at a density of 0.05x 106 to 0.2 x 106 cells l-1. The biomass of planktonic ciliatesvaried between stations from 20 to 100 mg m-3. The joint biomassof planktonic protozoa in the water column was between 3 and12 g m-3 at most of the stations.  相似文献   

17.
A system was developed to test the effects of floodwater O2concentration on ethylene evolution and stem lenticel hypertrophy,and the effects of exogenous ethylene on stem lenticel hypertrophyin mango (Mangifera indica L.) trees. Dissolved O2 concentrationsof 1–7x10–9 m3 m–3 generally resulted in hypertrophyof stem lenticels within about 6 d of flooding, whereas floodwaterO2 concentrations of 13–15 x 10–9 m3 m–3 delayedhypertrophy until about day 9. After 14d of flooding, therewere more than twice the number of hypertrophied lenticels pertree with floodwater O2 concentrations of 1–7 x 10–9m3 m–3 than with floodwater O2 concentrations of 15 x10–9 m3 m–3. Ethylene evolution from stem tissueimmediately above the floodline increased 4- to 8-fold in treesexposed to floodwater O2 concentrations of 1–2 x 10–9m3 m–3, increased 2-fold for trees exposed to floodwaterO2 concentrations of 6–7 x 10–9 m3 m–3, butremained constant with floodwater O2 concentrations of 13–15x 10–9 m3 m–3. Plants maintained in highly oxygenatedfloodwater (13–15 x 10–9 m3 m–3), and givenexogenous ethylene developed many hypertrophied lenticels, whereasplants in highly oxygenated water and not given ethylene developedfewer or nohypertrophied lenticels. These data suggest thatethylene plays a role in promotion of stem lenticel hypertrophyin flooded mango trees, and that floodwater dissolved oxygenconcentration can regulate stem lenticel hypertrophy and ethyleneevolution in this species. Key words: Flooding, hypoxia, hypertrophic cell swelling  相似文献   

18.
Perennial ryegrass (Lolium perenne L.) was grown from seed for29 d in flowing solution culture containing 0.1, 0.4 or 6.4mmol m–3 P before the concentrations were changed (0.1and 0.4 raised to 6.4; 6.4 lowered to 0.4; controls unchanged)for an experimental period of two weeks to test the hypothesisthat after the seedling stage, the maximum rate of plant growthcould be sustained by a lower concentration of phosphate atthe root/solution interface than was necessary for the maximumrate of seedling growth. During the 29 d seedling period growthwas greatest on 6.4 mmol m–3 P achieving 179 mg per plantdry weight compared with 122 and 26 mg on 0.4 and 0.1 mmol m–3P respectively. During the experimental period growth on thetreatment 6.4 lowered to 0.4 mmol m–3 P continued at thesame rate as the 6.4 control achieving 981 and 983 mg per plantdry weight respectively. Similarly growth of the treatment 0.4raised to 6.4 mol m–3 P was unaffected by the change inconcentration and was comparable with the 0.4 control. Bothresults support the hypothesis for seedlings exceeding about100 mg per plant dry weight. In contrast the small plants ofthe treatment 0.1 raised to 6.4 mmol m–3 P behaved similarlyto seedlings and responded rapidly to the increased concentrationof phosphate in solution, achieving high rates of phosphateuptake and increasing the growth of shoot more than the growthof root so that the ratio of root: shoot declined from 065 to0.34, a value similar to that for the seedlings grown on 6.4mmol m–3 P. Key words: Lolium perenne L, Phosphate concentration, Seedling growth  相似文献   

19.
Chlorophyll distribution in Lake Kinneret was estimated in aperiod of low chlorophyll-a concentrations (3–7 mg m–3)using remotely sensed data. The data set included high-spectral-resolutionradiometric measurements in the range 400–750 nm, chlorophylland suspended matter concentrations, Secchi disk transparencyand vertical attenuation coefficients at 20 stations. The spectroradiometricdata were used to create the algorithms suitable for quantitativedetermination of chlorophyll content. The present paper presentsexperimental field evidence showing that fluorescence can besuccessfully used for remote monitoring of chlorophyll-a content(with an estimation error <0.5 mg m–3) in productiveinland waters with a background of variable and relatively highsuspended matter concentration.  相似文献   

20.
Uptake rates of 14C (filtration and the acidification-bubblingmethod—ABM) were measured weekly in a shallow region ofthe Patos Lagoon estuary (3207'S, 5206'W) between March 1989and March 1990. Phytoplankton production varied seasonally,the lowest values occurring in the austral winter (June–August1989) and the highest rates during spring and summer (March1989; September 1989–March 1990). Particulate carbon productionvaried between 0.65 and 70.6 mg C m–3 h–1 and wasmostly associated with organisms <20 µm (mean = 73.4%).Dissolved organic carbon (DOC) released by phytoplankton variedbetween 0.1 and 89.3 mg C m–3 h–1 representing  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号