首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Pyruvate orthophosphate dikinase (PPDK) is a key enzyme in C(4) photosynthesis and is also found in C(3) plants. It is post-translationally modified by the PPDK regulatory protein (RP) that possesses both kinase and phosphotransferase activities. Phosphorylation and dephosphorylation of PPDK lead to inactivation and activation respectively. Arabidopsis thaliana contains two genes that encode chloroplastic (RP1) and cytosolic (RP2) isoforms of RP, and although RP1 has both kinase and phosphotransferase activities, to date RP2 has only been shown to act as a kinase. Here we demonstrate that RP2 is able to catalyse the dephosphorylation of PPDK, although at a slower rate than RP1 under the conditions of our assay. From yeast two-hybrid analysis we propose that RP1 binds to the central catalytic domain of PPDK, and that additional regions towards the carboxy and amino termini are required for a stable interaction between RP2 and PPDK. For 21 highly conserved amino acids in RP1, mutation of 15 of these reduced kinase and phosphotransferase activity, while mutation of six residues had no impact on either activity. We found no mutant in which only one activity was abolished. However, in some chimaeric fusions that comprised the amino and carboxy termini of RP1 and RP2 respectively, the kinase reaction was severely compromised but phosphotransferase activity remained unaffected. These findings are consistent with the findings that both RP1 and RP2 modulate reversibly the activity of PPDK, and possess one bifunctional active site or two separate sites in close proximity.  相似文献   

3.
4.
Recent studies reveal that the intracellular localization of pyruvate,Pi dikinase (PPDK, EC 2.7.9.1) in mesophyll cells of malic enzyme (ME)-dependent Crassulacean acid metabolism (CAM) plants varies among species, occurring not only in the chloroplasts but also in the cytosol in some species. The facultative CAM plant Kalanchoë blossfeldiana accumulates PPDK in both compartments of the mesophyll cells. In this study, the patterns of accumulation of the chloroplastic and cytosolic PPDKs were investigated for K. blossfeldiana plants with different CAM activities by immunogold labeling and electron microscopy. Greater CAM activity was found in plants grown under drought conditions with short days than under well-watered conditions with long days, and in lower leaves than in higher leaves. There was a trend that plants and leaves with greater CAM activity show denser labeling for PPDK in both the cytosol and chloroplasts. However, the ratio of the density of PPDK labeling in the cytosol to that in the chloroplasts was almost constant (2.4–3.0). Higher labeling for phosphoenolpyruvate carboxylase (EC 4.1.1.31) in the cytosol was also correlated with higher CAM activity but there was almost no difference in the density of labeling for ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) in the chloroplasts. These results indicate that the increase in accumulation of cytosolic PPDK is closely associated with the increase of chloroplastic PPDK during enhanced CAM expression. This suggests that both PPDKs are involved in CAM function.  相似文献   

5.
6.
The protein content of seeds determines their nutritive value, downstream processing properties and market value. Up to 95% of seed protein is derived from amino acids that are exported to the seed after degradation of existing protein in leaves, but the pathways responsible for this nitrogen metabolism are poorly defined. The enzyme pyruvate,orthophosphate dikinase (PPDK) interconverts pyruvate and phosphoenolpyruvate, and is found in both plastids and the cytosol in plants. PPDK plays a cardinal role in C4 photosynthesis, but its role in the leaves of C3 species has remained unclear. We demonstrate that both the cytosolic and chloroplastic isoforms of PPDK are up‐regulated in naturally senescing leaves. Cytosolic PPDK accumulates preferentially in the veins, while chloroplastic PPDK also accumulates in mesophyll cells. Analysis of microarrays and labelling patterns after feeding 13C‐labelled pyruvate indicated that PPDK functions in a pathway that generates the transport amino acid glutamine, which is then loaded into the phloem. In Arabidopsis thaliana, over‐expression of PPDK during senescence can significantly accelerate nitrogen remobilization from leaves, and thereby increase rosette growth rate and the weight and nitrogen content of seeds. This indicates an important role for cytosolic PPDK in the leaves of C3 plants, and allows us to propose a metabolic pathway that is responsible for production of transport amino acids during natural leaf senescence. Given that increased seed size and nitrogen content are desirable agronomic traits, and that efficient remobilization of nitrogen within the plant reduces the demand for fertiliser applications, PPDK and the pathway in which it operates are targets for crop improvement.  相似文献   

7.
Pyruvate,orthophosphate (Pi) dikinase (PPDK) is best recognized as a chloroplastic C(4) cycle enzyme. As one of the key regulatory foci for controlling flux through this photosynthetic pathway, it is strictly and reversibly regulated by light. This light/dark modulation is mediated by reversible phosphorylation of a conserved threonine residue in the active-site domain by the PPDK regulatory protein (RP), a bifunctional protein kinase/phosphatase. PPDK is also present in C(3) plants, although it has no known photosynthetic function. Nevertheless, in this report we show that C(3) PPDK in leaves of several angiosperms and in isolated intact spinach (Spinacia oleracea) chloroplasts undergoes light-/dark-induced changes in phosphorylation state in a manner similar to C(4) dikinase. In addition, the kinetics of this process closely resemble the reversible C(4) process, with light-induced dephosphorylation occurring rapidly (< or =15 min) and dark-induced phosphorylation occurring much more slowly (> or =30-60 min). In intact spinach chloroplasts, light-induced dephosphorylation of C(3) PPDK was shown to be dependent on exogenous Pi and photosystem II activity but independent of electron transfer from photosystem I. These in organello results implicate a role for stromal pools of Pi and adenylates in regulating the reversible phosphorylation of C(3)-PPDK. Last, we used an in vitro RP assay to directly demonstrate ADP-dependent PPDK phosphorylation in desalted leaf extracts of the C(3) plants Vicia faba and rice (Oryza sativa). We conclude that an RP-like activity mediates the light/dark modulation of PPDK phosphorylation state in C(3) leaves and chloroplasts and likely represents the ancestral isoform of this unusual and key C(4) pathway regulatory "converter" enzyme.  相似文献   

8.
9.
Kranz-less, C4-type photosynthesis was induced in the submersed monocot Hydrilla verticillata (L.f.) Royle. During a 12-d induction period the CO2 compensation point and O2 inhibition of photosynthesis declined linearly. Phosphoenolpyruvate carboxylase (PEPC) activity increased 16-fold, with the major increase occurring within 3 d. Asparagine and alanine aminotransferases were also induced rapidly. Pyruvate orthophosphate dikinase (PPDK) and NADP-malic enzyme (ME) activities increased 10-fold but slowly over 15 d. Total ribulose-1,5-bisphosphate carboxylase/oxygenase activity did not increase, and its activation declined from 82 to 50%. Western blots for PEPC, PPDK, and NADP-ME indicated that increased protein levels were involved in their induction. The H. verticillata NADP-ME polypeptide was larger (90 kD) than the maize C4 enzyme (62 kD). PEPC and PPDK exhibited up-regulation in the light. Subcellular fractionation of C4-type leaves showed that PEPC was cytosolic, whereas PPDK and NADP-ME were located in the chloroplasts. The O2 inhibition of photosynthesis was doubled when C4-type but not C3-type leaves were exposed to diethyl oxalacetate, a PEPC inhibitor. The data are consistent with a C4-cycle concentrating CO2 in H. verticillata chloroplasts and indicate that Kranz anatomy is not obligatory for C4-type photosynthesis. H. verticillata predates modern terrestrial C4 monocots; therefore, this inducible CO2-concentrating mechanism may represent an ancient form of C4 photosynthesis.  相似文献   

10.
J Sheen 《The Plant cell》1991,3(3):225-245
I describe here the organization of maize C4 chloroplast and non-C4 cytosolic pyruvate, orthophosphate dikinase (PPDK) genes and the molecular mechanisms underlying their differential expression. The maize C4 chloroplast PPDK gene (C4ppdkZm1) appears to have been created by the addition of an exon encoding the chloroplast transit peptide at a site upstream of a cytosolic PPDK gene (cyppdkZm1). A splice acceptor sequence located in the first exon of cyppdkZm1 allows the fusion of the transit peptide to the cyppdkZm1 sequences. A second cyPPDK gene (cyppdkZm2) shares extensive homology with cyppdkZm1 in the coding region and in the 5' flanking region up to the TATA box. By a novel protoplast transient expression method, I show that the light-inducible expression of C4ppdkZm1 is controlled by two expression programs mediated through separate upstream regulatory elements that are active in leaf, but inactive in root and stem. Light-mediated C4ppdkZm1 expression in maize is apparently uncoupled from leaf development and partially associated with chloroplast development. For cyppdkZm1 expression, distinct upstream elements and a specific TATA promoter element, located in the first intron of C4ppdkZm1, are required. The low expression of cyppdkZm2 can be attributed to an absence of upstream positive elements and weak activity of the TATA promoter element.  相似文献   

11.
12.
We report the sequences of full-length cDNAs for the nuclear genes encoding the chloroplastic and cytosolic fructose-1,6-bisphosphate aldolase (EC 4.1.2.13) from spinach. A comparison of the deduced amino-acid sequences with one another and with published cytosolic aldolase sequences of other plants revealed that the two enzymes from spinach share only 54% homology on their amino acid level whereas the homology of the cytosolic enzyme of spinach with the known sequences of cytosolic aldolases of maize, rice and Arabidopsis range from 67 to 92%. The sequence of the chloroplastic enzyme includes a stroma-targeting N-terminal transit peptide of 46 amino acid residues for import into the chloroplast. The transit peptide exhibits essential features similar to other chloroplast transit peptides. Southern blot analysis implies that both spinach enzymes are encoded by single genes.  相似文献   

13.
A cDNA and genomic clone encoding maize chloroplastic Cu/Zn superoxide dismutase Sod1 were isolated. Southern blot analysis indicated little homology between the chloroplastic (Sod1) and the cytosolic (Sod2, Sod4, Sod4A) cDNAs. Sequence analysis of the genomic clone revealed a promoter, transit peptide, and partial coding sequence. The promoter contained several response elements (e.g., for light, cold temperature, xenobiotics) that may be involved in the regulation of the Sod1 gene. Sod1 expression during development and in response to physiological and chemical stressors such as temperature, xenobiotics (paraquat), and light were examined.  相似文献   

14.
15.
The lizard Lacerta vivipara has allopatric oviparous and viviparous populations. The cold hardiness strategy of L. vivipara has previously been studied in viviparous populations, but never in oviparous ones. The present study reveals that both the oviparous and viviparous individuals of this species are able to survive in a supercooled state at -3 degrees C for at least one week when kept on dry substrates. The mean crystallisation temperatures of the body, around -4 degrees C on dry substrata and -2 degrees C on wet substrata, do not differ between oviparous and viviparous individuals. All the individuals are able to tolerate up to 48-50% of their body fluid converted into ice, but only viviparous individuals were able to stabilize their body ice content at 48%, and hence were able to survive even when frozen at -3 degrees C for times of up 24 hours. Ice contents higher than 51% have been constantly found lethal for oviparous individuals. This suggests that, in L. vivipara, the evolution towards a higher degree of freezing tolerance could parallel the evolution of the viviparous reproductive mode, a feature believed to be strongly selected under cold climatic conditions. This is the first report, among reptiles, of an intraspecific variation regarding the freeze tolerance capacities.  相似文献   

16.
17.
18.
HCVisthemajorcauseofposttransfusionnonA,nonBhepatitis[1].About50%oftheinfectionswilldevelopintochronichepatitisandamongthemabout20%willresultinlivercirrhosisandhepatocellularcarcinoma[2].BecausethetiterofHCVparticleinpatient’sbloodisextremelylow,andthereisno…  相似文献   

19.
Summary The patterns of chloroplastic and cytosolic isoenzymes of triosephosphate isomerase were analysed by immunoblotting in leaves of rye, wheat, and some species of Aegilops or Agropyrum. While rye contained solely one chloroplastic and one cytosolic isoenzyme, wheat had a much more complex pattern which can be explained by the presence of three genomes in 6 x wheats (AABBDD) with distinct triosephosphate isomerase genes that provided different subunit species for the dimeric isoenzyme molecules. The 6 × wheats contained five, the 4 × wheats three, and the 2 × wheats only one chloroplastic isoenzyme band. The isoenzyme patterns were in accordance with a potential origin of one of the three chloroplastic triosephosphate isomerase genes of 6 × wheats from an Aegilops ancestor. The descent of the other two genes was, however, not in accordance with common contentions on the general evolution of cultural wheats. In the reciprocal intergeneric hybrids Secalotricum and Triticale both the chloroplastic and the cytosolic isoenzyme patterns of rye and wheat were biparentally inherited, indicating that both isoenzymes were controlled by nuclear genes. When monitored by immunoblotting the chloroplastic triosephosphate isomerase isoenzymes may provide useful genetic markers.  相似文献   

20.
Apple leaf cytosolic phosphoglucose isomerase (PGI, EC 5.3.1.9) was purified to an apparent homogeneity with a specific activity of 2456units/mg protein, and chloroplastic PGI was partially purified to a specific activity of 72units/mg protein to characterize their biochemical properties. These two isoforms showed differential responses to heat treatment; incubation at 50 degrees C for 10min resulted in a complete loss of the chloroplastic PGI activity, whereas the cytosolic PGI only lost 50% of its activity. Apple cytosolic PGI is a dimeric enzyme with a molecular mass of 66kDa for each monomer. The activity of both isoforms was strongly inhibited by erythrose 4-phosphate (E4P) with a K(i) of 1.2 and 3.0muM for the cytosolic PGI and chloroplastic PGI, respectively. Sorbitol 6-phosphate (Sor6P), an intermediate in sorbitol biosynthesis, was found to be a competitive inhibitor for both cytosolic and chloroplastic PGIs with a K(i) of 61 and 40muM, respectively. PGIs from both spinach and tomato leaves were also inhibited by Sor6P in a similar manner. The possible physiological significance of this finding is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号