共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutants of Escherichia coli H+-ATPase defective in the delta subunit of F1 and the b subunit of F0 总被引:5,自引:0,他引:5
Complete nucleotide sequence of the genes for subunits of the H+ ATPase of E.coli has been determined and several hybrid plasmids carrying various portions of these genes have been constructed. Genetic complementation and recombination tests of about forty mutants of E.coli defective in the ATPase were performed using these plasmids for identifying the locations of the mutations. Two mutants defective in the delta subunit and a novel type of mutant defective in the b subunit of F0 were identified. The delta subunit mutants showed no proton conduction, suggesting that this subunit has an important role for the proton conduction. The ATPase of the b subunit mutant has a normal activity of proton channel portion, which phenotype is clearly different from that of mutants of the b subunit reported previously. 相似文献
2.
Coupling factor F1 ATPase with defective beta subunit from a mutant of Escherichia coli 总被引:4,自引:0,他引:4
The defective coupling factor F1 ATPase from a mutant strain (KF11) of Escherichia coli was purified to a practically homogeneous form. The final specific activity of Mg2+-ATPase was 6-9 units/mg protein, which is about 10-15 times lower than that of F1 ATPase from the wild-type strain. The mutant F1 had a ratio of Ca2+-ATPase to Mg2+-ATPase of about 3.5, whereas the wild-type F1 had ratio of about 0.8. The mutant F1 was more unstable than wild-type F1: on storage at -80 degrees C for 2 weeks, about 80% of its activity (dependent on Ca2+ or Mg2+) was lost, whereas none of the activity of the wild-type F1 was lost. The following results indicate that the mutation is in the beta subunit. (i) High Mg2+-ATPase activity (about 20 units/mg protein) was reconstituted when the beta subunit from wild type F1 was added to dissociated mutant F1 and the mixture was dialyzed against buffer containing ATP and Mg2+. (ii) Low ATPase activity having the same ratio of Ca2+-ATPase to Mg2+-ATPase as the mutant F1 was reconstituted when a mixture of the beta subunit from the mutant F1 and the alpha and gamma subunits from wild-type F1 was dialyzed against the same buffer. (iii) Tryptic peptide analysis of the beta subunit of the mutant showed a difference in a single peptide compared with the wild-type strain. 相似文献
3.
Deletion of seven amino acid residues from the gamma subunit of Escherichia coli H+-ATPase causes total loss of F1 assembly on membranes 总被引:2,自引:0,他引:2
A mutant gene for the gamma subunit of H+-translocating ATPase was cloned from Escherichia coli mutant NR70 isolated by B. P. Rosen [J. Bacteriol. 116, 1124-1129 (1973)]. Determination of its nucleotide sequence revealed a deletion of 21 base pairs between nucleotide residues 64 and 84, resulting in a deletion of seven amino acid residues (LysAlaMetGluMetValAla) from the amino-terminal portion. This deletion resulted in the loss of a hydrophobic domain of the subunit estimated by an analysis of its hydropathic character. Since F1 subunits are reported not to be assembled on the normal F0 portion of NR70, it is concluded that the hydrophobic domain deleted in the mutant subunit is important for assembly of the F1 portion. Introduction of a plasmid pNR70 carrying the mutant allele of NR70 into a wild-type strain gave no recombinants resistant to neomycin. This result suggested that the neomycin-resistant phenotype is not directly related to the defect in the gamma subunit of NR70. 相似文献
4.
We discussed application of in vitro mutagenesis on H+-ATPase (F0F1) of Escherichia coli. The oligonucleotide-directed site specific mutagenesis and construction of a set of truncated subunits were useful for identifying essential residues of beta subunit and a functional region of epsilon subunit, respectively, of this complicated membrane enzyme. 相似文献
5.
Mutational analysis of the glycine-rich region of the c subunit of the Escherichia coli F0F1 ATPase. 下载免费PDF全文
Eight strains carrying amino acid substitutions within the c subunit of the F0F1 ATPase of Escherichia coli have been constructed by using site-directed mutagenesis. Three strains carrying the substitutions Gly-23----Leu, Ala-24----Leu, and Gly-38----Leu, which reside in or near the highly conserved glycine-rich region of the c subunit, are unable to carry out oxidative phosphorylation. Membranes prepared from these strains possess basal levels of ATPase activity. In contrast, strains carrying the substitutions Ile-30----Phe, Gly-33----Leu, Gly-58----Leu, and Lys-34----Val and the Lys-34----Val, Glu-37----Gln double substitution were found to possess a coupled phenotype similar to that of the wild type. 相似文献
6.
Two monoclonal antibodies, beta 208 and beta 210, against the beta subunit of the F(1) ATPase from Escherichia coli reacted with an intact beta subunit and also a peptide corresponding to a portion of beta between residues 1 and 145. Mutations at Ala-1, Val-15, Glu-16, Phe-17, Leu-29, Gly-65, or Leu-66, and His-110 or Arg-111 for beta 210 and beta 208, respectively, caused decreased antibody binding to beta, suggesting that these residues form the epitopes and are thought to lie close together on the surface of the beta subunit. The topological locations of the corresponding residues in the atomic structure of the bovine beta subunit agree well with these expectations, except for Ala-1 and Leu-29. beta 210 binds to two beta strands including the epitope residues that are 50 residues apart, indicating that this antibody recognizes the tertiary structure of the N-terminal end region. Mutations in the epitope residues of beta 210 do not affect the F(1) ATPase activity, suggesting that surfaces of the two beta strands in the amino-terminal end region are not functionally essential. To analyze the functional importance around His-110 recognized by beta 208 we introduced site specific mutations at residues His-110 and Ile-109. Ile-109 to Ala or Arg, and His-110 to Ala or Asp caused defective assembly of F(1). However, the His-110 to Arg mutation had no effect on molecular assembly, suggesting that Ile-109 and His-110, especially the positive charge of His-110 are essential for the assembly of F(1). The His-110 to Arg mutation caused a large decrease in F(1)-ATPase activity, suggesting that a subtle change in the topological arrangement of the positive charge of His-110 located on the surface of beta plays an important role in the catalytic mechanism of the F(1)-ATPase. 相似文献
7.
Suppression mutations in the defective beta subunit of F1-ATPase from Escherichia coli 总被引:1,自引:0,他引:1
J Miki K Fujiwara M Tsuda T Tsuchiya H Kanazawa 《The Journal of biological chemistry》1990,265(35):21567-21572
The Escherichia coli mutant of the proton-translocating ATPase KF11 (Kanazawa, H., Horiuchi, Y., Takagi, M., Ishino, Y., and Futai, M. (1980) J. Biochem. (Tokyo) 88, 695-703) has a defective beta subunit with serine being replaced by phenylalanine at codon 174. Four suppression mutants (RE10, RE17, RE18, and RE20) from this strain capable of growth on minimal plate agar supplemented by succinate were isolated. The original point mutation at codon 174 was intact in these strains. Additional point mutations, Ala-295 to Thr, Gly-149 to Ser, Leu-400 to Gln, Ala-295 to Pro, for RE10, RE17, RE18, and RE20, respectively, were identified by the polymerase chain reaction and sequencing. These mutations, except for RE10, were confirmed as a single mutation conferring a suppressive phenotype by genetic suppression assay using KF11 as the host cells. The results indicated that Ser-174 has functional interaction with Gly-149, Ala-295, and Leu-400. The residues are located within the previously estimated catalytic domain of the beta subunit, indicating that this domain is indeed folded for the active site of catalytic function. Growth rates of the revertants in the minimal medium with succinate increased compared with that of KF11, showing that ATP synthesis recovered to some extent. The ATP hydrolytic activity in the revertant membranes increased in RE17 and RE20 but did not in RE10 and RE18, suggesting that synthesis and hydrolysis are not necessarily reversible in the proton-translocating ATPase (F1F0). 相似文献
8.
Effect of the delta subunit on assembly and proton permeability of the F0 proton channel of Escherichia coli F1F0 ATPase. 下载免费PDF全文
During the assembly of the Escherichia coli proton-translocating ATPase, the subunits of F1 interact with F0 to increase the proton permeability of the transmembrane proton channel. We tested the involvement of the delta subunit in this process by partially and completely deleting uncH (delta subunit) from a plasmid carrying the genes for the F0 subunits and delta and testing the effects of those F0 plasmids on the growth of unc+ and unc mutant E. coli strains. We found that the delta subunit was required for inhibition of growth of unc+ cells. We also tested membranes isolated from unc-deleted cells containing F0 plasmids for F1-binding ability. In unc-deleted cells, these plasmids produced F0 in amounts comparable to those found in normal unc+ E. coli cells, while having only small effects on cell growth. These studies demonstrate that the delta subunit plays an important role in opening the F0 proton channel but that it does not serve as a temporary plug of F0 during assembly, as had been previously speculated (S. Pati and W. S. A. Brusilow, J. Biol. Chem. 264:2640-2644, 1989). 相似文献
9.
Replacement of arginine 246 by histidine in the beta subunit of Escherichia coli H+-ATPase resulted in loss of multi-site ATPase activity 总被引:3,自引:0,他引:3
A mutant strain KF43 of Escherichia coli defective in the beta subunit of H+-translocating ATPase (F0F1) was examined. In this mutant, replacement of Arg246 by His was identified by DNA sequencing of the mutant gene and confirmed by tryptic peptide mapping. The mutant F1-ATPase was defective in multi-site hydrolysis of ATP but was active in uni-site hydrolysis. Studies on the kinetics of uni-site hydrolysis indicated that the k1 (rate of ATP binding) was similar to that of the wild-type, but the k-1 (rate of release of ATP) could not be measured. The mutant enzyme had a k3 (rate of release of inorganic phosphate) about 15-fold higher than that of the wild-type and showed 3 orders of magnitude lower promotion from uni- to multi-site catalysis. These results suggest that Arg246 or the region in its vicinity is important in multi-site hydrolysis of ATP and is also related to the binding of inorganic phosphate. Reconstitution experiments using isolated subunits suggested that hybrid enzymes (alpha beta gamma complexes) carrying both the mutant and wild-type beta subunits were inactive in multi-site hydrolysis of ATP, supporting the notion that three intact beta subunits are required for activity of the F1 molecule. 相似文献
10.
Escherichia coli H+-ATPase: loss of the carboxyl terminal region of the gamma subunit causes defective assembly of the F1 portion 总被引:3,自引:0,他引:3
J Miki M Takeyama T Noumi H Kanazawa M Maeda M Futai 《Archives of biochemistry and biophysics》1986,251(2):458-464
Mutant genes for the gamma subunit of H+-translocating ATPase (H+-ATPase) were cloned from eight different strains of Escherichia coli isolated in this laboratory. Determination of their nucleotide sequences revealed that they are amber nonsense mutations: a Gln codon at position 15, 158, 227, 262, and 270, respectively, was replaced by a termination codon in these strains. As terminal Met is missing in the gamma subunit, these results indicate that these strains are capable of synthesizing fragments of gamma subunits of 13, 156, 225, 260, and 268 amino acid residues, respectively. Studies on the properties of membranes of these strains suggested the importance of the region between Gln 269 and the carboxyl terminus (residue 286) for forming a stable F1 complex with ATPase activity and the region between Gln 226 and Gln 261 for normal interaction of F1 with F0. The sequence from Gln 261 to Gln 269 also seemed to be important for stability of F1 assembly on the membranes. The high frequency of the nonsense mutations suggested that the number of essential residues is limited in this subunit. Comparison of the homologies of the amino acid sequences of the gamma subunits from four different sources confirmed this notion: 19% of amino acid residues are identically conserved in these four strains, and the conserved regions are the amino terminal and carboxyl terminal regions. 相似文献
11.
M Jounouchi M Takeyama T Noumi Y Moriyama M Maeda M Futai 《Archives of biochemistry and biophysics》1992,292(1):87-94
Escherichia coli strain KF148(SD-) defective in translation of the uncC gene for the epsilon subunit of H(+)-ATPase could not support growth by oxidative phosphorylation due to lack of F1 binding to Fo (M. Kuki, T. Noumi, M. Maeda, A. Amemura, and M. Futai, 1988, J. Biol. Chem. 263, 17, 437-17, 442). Mutant uncC genes for epsilon subunits lacking different lengths from the amino terminus were constructed and introduced into strain KF148(SD-). F1 with an epsilon subunit lacking the 15 amino-terminal residues could bind to F0 in a functionally competent manner, indicating that these amino acid residues are not absolutely necessary for formation of a functional enzyme. However, mutant F1 in which the epsilon subunit lacked 16 amino-terminal residues showed defective coupling between ATP hydrolysis (synthesis) and H(+)-translocation, although the mutant F1 showed partial binding to Fo. These findings suggest that the epsilon subunit is essential for binding of F1 to F0 and for normal H(+)-translocation. Previously, Kuki et al. (cited above) reported that 60 residues were not necessary for a functional enzyme. However, the mutant with an epsilon subunit lacking 15 residues from the amino terminus and 4 residues from the carboxyl terminus was defective in oxidative phosphorylation, suggesting that both terminal regions affect the conformation of the region essential for a functional enzyme. 相似文献
12.
The bindings of Mg2+ to the F1 portion of Escherichia coli H+-ATPase and its isolated alpha and beta subunits were studied with 8-anilinonaphthalene-1-sulfonate (ANS). The fluorescence of ANS increased upon addition of F1 or its alpha subunit or beta subunit, as reported previously (M. Hirano, K. Takeda, H. Kanazawa, and M. Futai (1984) Biochemistry 23, 1652-1656). The fluorescence of ANS bound to F1 or its beta subunit increased significantly with further addition of Mg2+, whereas that of the alpha subunit increased only slightly. Ca2+ and Mn2+ had similar effects on the fluorescence of ANS with F1 and its beta subunit. The Mg2+-induced fluorescence enhancement (delta F) was high at an alkaline pH and was lowered by addition of ethylenediaminetetraacetic acid. Dicyclohexylcarbodiimide and azide had no effect on the delta F. Binding analysis showed that the concentration dependence of Mg2+ on the fluorescence enhancement of the beta subunit is similar to that of F1. These results suggest that both the beta subunit and F1 have binding sites for Mg2+ and that the delta F observed with F1 may be due to the binding of Mg2+ to the beta subunit. 相似文献
13.
Role of the delta subunit in enhancing proton conduction through the F0 of the Escherichia coli F1F0 ATPase. 下载免费PDF全文
We studied the effect of the delta subunit of the Escherichia coli F1 ATPase on the proton permeability of the F0 proton channel synthesized and assembled in vivo. Membranes isolated from an unc deletion strain carrying a plasmid containing the genes for the F0 subunits and the delta subunit were significantly more permeable to protons than membranes isolated from the same strain carrying a plasmid containing the genes for the F0 subunits alone. This increased proton permeability could be blocked by treatment with either dicyclohexyl-carbodiimide or purified F1, both of which block proton conduction through the F0. After reconstitution with purified F1 in vitro, both membrane preparations could couple proton pumping to ATP hydrolysis. These results demonstrate that an interaction between the delta subunit and the F0 during synthesis and assembly produces a significant change in the proton permeability of the F0 proton channel. 相似文献
14.
T Noumi M Azuma S Shimomura M Maeda M Futai 《The Journal of biological chemistry》1987,262(31):14978-14982
The uncD gene for the beta subunit of Escherichia coli H+-ATPase was cloned downstream of the lac promoter and mutagenized (Glu-185----Gln or Lys) by an oligonucleotide-directed procedure. The recombinant plasmid was introduced into a strain in which the unc operon for subunits of H+-ATPase was deleted. The wild-type or mutant beta subunit synthesized amounted to about 10% total cell protein and was mainly found in the cytoplasmic fraction. These subunits could be purified to almost homogeneity by conventional procedures. The wild-type and two mutant beta subunits had essentially the same Kd values for 8-anilinonaphthalene-1-sulfonate, aurovertin, and ATP, although the fluorescence intensities of 8-anilinonaphthalene-1-sulfonate and aurovertin were significantly less when bound to the two mutant beta subunits than when bound to the wild-type subunit. The three beta subunits showed essentially the same circular dichroism spectra, indicating alpha-helical contents of about 16-18%. Thus, the mutations did not cause marked change of the secondary structure of the subunit. However, measurements of theta 208 during linear increase in temperature suggested that replacement of Glu-185 by Gln or Lys slightly changed the stability of the secondary structure. Only trace amounts of alpha beta gamma complexes could be reconstituted using the two mutant beta subunits. These results suggest that Glu-185 or the region in its vicinity may be essential for subunit assembly. The methods developed in this study should be useful for further studies on the beta subunit. 相似文献
15.
Impaired proton conductivity resulting from mutations in the a subunit of F1F0 ATPase in Escherichia coli 总被引:9,自引:0,他引:9
Mutations in the uncB gene which encodes the a subunit of F1F0-ATPase in Escherichia coli were isolated and characterized. Eight mutations caused premature polypeptide chain termination. Two mutations were single amino acid substitutions resulting in the replacements of serine 206 with leucine (ser-206----leu) and histidine 245 with tyrosine (his-245----tyr). The ser-206----leu mutation does not alter F1 binding and allows ATP driven membrane energization at a low level. Stripping of F1 from membranes containing the ser-206----leu mutation does not render the membranes permeable to protons indicating impaired proton conductivity. The his-245----tyr mutation also blocks Fo-mediated proton conduction but has normal F1 binding properties. F1 bound to membranes with both ser-206----leu and his-245----tyr mutant a subunits is sensitive to dicyclohexylcarbodiimide. Apparently, both missense mutations impair proton conduction without altering assembly of the F1F0-ATPase complex. The direct involvement of the a subunit in proton translocation is discussed. 相似文献
16.
A sequence of 10 amino acids (I-C-S-D-K-T-G-T-L-T) of ion motive ATPases such as Na+/K+-ATPase is similar to the sequence of the beta subunit of H+-ATPases, including that of Escherichia coli (I-T-S-T-K-T-G-S-I-T) (residues 282-291). The Asp (D) residue phosphorylated in ion motive ATPase corresponds to Thr (T) of the beta subunit. This substitution may be reasonable because there is no phosphoenzyme intermediate in the catalytic cycle of F1-ATPase. We replaced Thr-285 of the beta subunit by an Asp residue by in vitro mutagenesis and reconstituted the alpha beta gamma complex from the mutant (or wild-type) beta and wild-type alpha and gamma subunits. The uni- and multisite ATPase activities of the alpha beta gamma complex with mutant beta subunits were about 20 and 30% of those with the wild-type subunit. The rate of ATP binding (k1) of the mutant complex under uni-site conditions was about 10-fold less than that of the wild-type complex. These results suggest that Thr-285, or the region in its vicinity, is essential for normal catalysis of the H+-ATPase. The mutant complex could not form a phosphoenzyme under the conditions where the H+/K+-ATPase is phosphorylated, suggesting that another residue(s) may also be involved in formation of the intermediate in ion motive ATPase. The wild-type alpha beta gamma complex had slightly different kinetic properties from the wild-type F1, possibly because it did not contain the epsilon subunit. 相似文献
17.
Mutations in the delta subunit influence the assembly of F1F0 ATP synthase in Escherichia coli. 下载免费PDF全文
Missense mutations affecting Asp-161 and Ser-163 in the delta subunit of F1F0 ATP synthase have been generated. Although most substitutions allowed substantial enzyme function, the delta Asp-161-->Pro substitution resulted in a loss of enzyme activity. The loss of activity was attributable to a structural failure altering assembly of the enzyme complex. 相似文献
18.
Mutations in the conserved proline 43 residue of the uncE protein (subunit c) of Escherichia coli F1F0-ATPase alter the coupling of F1 to F0 总被引:3,自引:0,他引:3
M J Miller D Fraga C R Paule R H Fillingame 《The Journal of biological chemistry》1989,264(1):305-311
The conserved Pro43 residue of the uncE protein (subunit c) of the Escherichia coli F1F0-ATPase was changed to Ser or Ala by oligonucleotide-directed mutagenesis, and the mutations were incorporated into the chromosome. The resultant mutant strains were capable of oxidative phosphorylation as indicated by their ability to grow on succinate and had growth yields on glucose that were 80-90% of wild type. Membrane vesicles from the mutants were slightly less efficient than wild type vesicles in ATP-driven proton pumping as indicated by ATP-dependent quenching of quinacrine fluorescence. The decreased quenching response was not due to increased H+ leakiness of the mutant membranes or to loss of F1-ATPase activity from the membrane. These results indicate that the mutant F1F0-ATPases are defective in coupling ATP hydrolysis to H+ translocation. The membrane ATPase activity of the mutants was inhibited less by dicyclohexylcarbodiimide than that of wild type. The decrease in sensitivity to inhibition by dicyclohexylcarbodiimide was caused primarily by dissociation of the F1-ATPase from the mutant F0 in the ATPase assay mixture. These results support the idea that Pro43, and neighboring conserved polar residues play an important role in the binding and functional coupling of F1 to F0. Although a Pro residue is found at position 43 in all species of subunit c studied, surprisingly, it is not absolutely essential to function. 相似文献
19.
Proton translocation by the F1F0ATPase of Escherichia coli. Mutagenic analysis of the a subunit 总被引:7,自引:0,他引:7
Cassette site-directed mutagenesis was employed to generate mutations in the a subunit (uncB (a) gene) of F1F0ATP synthase. Using sequence homology with similar subunits of other F1F0ATP synthases as a guide, 20 mutations were targeted to a region of the a subunit thought to constitute part of the proton translocation mechanism. ATP-driven proton pumping activity is lost with the substitution of lys, ile, val, or glu for arginine 210. Substitution of val, leu, gln, or glu for asparagine 214 does not completely block proton conduction, however, replacement of asparagine 214 with histidine does reduce enzyme activity below that necessary for significant function. Two or three mutations were constructed in each of four nonpolar amino acids, leucine 207, leucine 211, alanine 217, and glycine 218. Certain specific mutations in these positions result in partial loss of F1F0ATP synthase activity, but only the substitution of arginine for alanine 217 reduces ATP-driven proton pumping activity to undetectable levels. It is concluded that of the six amino acids studied, only arginine 210 is an essential component of the proton translocation mechanism. Fractionation of cell-free extracts of a subunit mutation strains generally reveals normal amounts of F1 specifically bound to the particulate fraction. One possible exception is the arginine 210 to isoleucine mutation which results in somewhat elevated levels of free F1 detectable in the soluble fraction. For nearly all a subunit mutations, F1F0-mediated ATP hydrolysis activity remains sensitive to inhibition by dicyclohexylcarbodiimide in spite of the fact that the mutations block proton translocation. 相似文献
20.
Dicyclohexylcarbodiimide (DCCD) specifically inhibits the F1F0-H+-ATP synthase complex of Escherichia coli by covalently modifying a proteolipid subunit that is embedded in the membrane. Multiple copies of the DCCD-reactive protein, also known as subunit c, are found in the F1F0 complex. In order to determine the minimum stoichiometry of reaction, we have treated E. coli membranes with DCCD, at varying concentrations and for varying times, and correlated inhibition of ATPase activity with the degree of modification of subunit c. Subunit c was purified from the membrane, and the degree of modification was determined by two methods. In the "specific radioactivity" method, the moles of [14C]DCCD per total mole of subunit c was calculated from the radioactivity incorporated per mg of protein, and conversion of mg of protein to mol of protein based upon amino acid analysis. In the "high performance liquid chromatography (HPLC) peak area" method, the DCCD-modified subunit c was separated from unmodified subunit c on an anion exchange AX300 HPLC column, and the areas of the peaks from the chromatogram quantitated. The shape of the modification versus inhibition curve indicated that modification of a single subunit c per F0 was sufficient to abolish ATPase activity. The titration data were fit by nonlinear regression analysis to a single hit mathematical model, A = Un(1 - r) + r, where A is the relative activity, U is the ratio of unmodified/total subunit c, n is the number of subunit c per F0, and r is a residual fraction of ATPase activity that was resistant to inhibition by DCCD. The two methods gave values for n equal to 10 by the specific radioactivity method and 14 by the HPLC peak area method, and values for r of 0.28 and 0.30, respectively. Most of the r value was accounted for by the observed dissociation of 15-20% of the F1-ATPase from the membrane under ATPase assay conditions. When the minimal, experimentally justified value of r = 0.15 was used in the equation above, the calculated values of n were reduced to 8 and 11, respectively. The value of n determined here, with a probable range of uncertainty of 8-14, is consistent with, and provides an independent type of experimental support for, the suggested stoichiometry of 10 +/- 1 subunit c per F1F0, which was determined by a more precise radiolabeling method (Foster, D. L., and Fillingame, R. H. (1982) J. Biol. Chem. 257, 2009-2015). 相似文献