首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We cloned and sequenced the glutathione reductase gene (gor) of an oxygen-tolerant Streptococcus mutans, and constructed a gor-disruption mutant by homologous recombination. The gor gene consisted of 1,350 bp, coding for a protein of 450 amino acid residues. The deduced amino acid sequence of the S. mutans gor gene product showed extensive similarity with those of glutathione reductases from prokaryotes and eukaryotes. Although the mutant could grow aerobically, it showed no growth in the presence of 2 mM diamide, a thiol-specific oxidant. In contrast, growth of the wild-type strain was not significantly inhibited by 2 mM diamide, and glutathione reductase activity was increased 2.2-fold under these conditions. In addition, the level of glutathione reductase activity in the wild-type strain was increased 3.6-fold upon exposure to air, and the elevated level of the enzyme was retained throughout the aerobic growth. Thus, glutathione reductase may be important in protection of S. mutans against oxidative stress.  相似文献   

2.
S Greer  R N Perham 《Biochemistry》1986,25(9):2736-2742
A glutathione reductase negative strain of Escherichia coli K-12 was isolated as a thermoresistant survivor when a gor::MuctsAp lysogen was subjected to elevated temperature. It was found that in addition to being ampicillin sensitive this mutant was hypersensitive to arsenate, which may be connected with the fact that the gor gene maps between 77 and 78 min on the E. coli genome, close to the pit locus encoding the major arsenate transport system of E. coli. A derivative of this mutant was used as the recipient in a screen of the Clarke and Carbon hybrid plasmid bank of E. coli DNA. A plasmid, pGR, was isolated that encodes both an arsenate-resistance element and glutathione reductase. Restriction mapping of this plasmid showed that the insert DNA is approximately 10 kilobase pairs in length, and a fragment of the gor gene was identified that allowed the gor gene to be accurately mapped on pGR by a combination of restriction analysis and Southern blotting. The DNA sequence of the gor gene was determined and found to encode a protein of 450 amino acid residues. The glutathione reductase of E. coli is very homologous to the human enzyme and is also related (though less closely) to other flavoprotein disulfide oxidoreductases whose sequences are available. These enzymes have retained a common mechanism while evolving different specificities.  相似文献   

3.
Streptococcus mutans is considered one of the primary etiologic agents of dental caries. Previously, we characterized the VicRK two-component signal transduction system, which regulates multiple virulence factors of S. mutans. In this study, we focused on the vicX gene of the vicRKX tricistronic operon. To characterize vicX, we constructed a nonpolar deletion mutation in the vicX coding region in S. mutans UA159. The growth kinetics of the mutant (designated SmuvicX) showed that the doubling time was longer and that there was considerable sensitivity to paraquat-induced oxidative stress. Supplementing a culture of the wild-type UA159 strain with paraquat significantly increased the expression of vicX (P < 0.05, as determined by analysis of variance [ANOVA]), confirming the role of this gene in oxidative stress tolerance in S. mutans. Examination of mutant biofilms revealed architecturally altered cell clusters that were seemingly denser than the wild-type cell clusters. Interestingly, vicX-deficient cells grown in a glucose-supplemented medium exhibited significantly increased glucosyltransferase B/C (gtfB/C) expression compared with the expression in the wild type (P < 0.05, as determined by ANOVA). Moreover, a sucrose-dependent adhesion assay performed using an S. mutans GS5-derived vicX null mutant demonstrated that the adhesiveness of this mutant was enhanced compared with that of the parent strain and isogenic mutants of the parent strain lacking gtfB and/or gtfC. Also, disruption of vicX reduced the genetic transformability of the mutant approximately 10-fold compared with that of the parent strain (P < 0.05, as determined by ANOVA). Collectively, these findings provide insight into important phenotypes controlled by the vicX gene product that can impact S. mutans pathogenicity.  相似文献   

4.
Shifting the temperature from 30 to 45 degrees C in an aerobic Escherichia coli culture inhibited the expression of the antioxidant genes katG, katE, sodA, and gor. The expression was evaluated by measuring beta-galactosidase activity in E. coli strains that contained fusions of the antioxidant gene promoters with the lacZ operon. Heat shock inhibited catalase and glutathione reductase, lowered the intracellular level of glutathione, and increased its extracellular level. It also suppressed the growth of mutants deficient in the katG-encoded catalase HPI, whereas the sensitivity of the wild-type and sodA sodB mutant cells to heat shock was almost the same. In the E. coli culture adapted to growth at 42 degrees C, the content of both intracellular and extracellular glutathione was two times higher than in the culture grown at 30 degrees C. The temperature-adapted cells grown aerobically at 42 degrees C showed an increased ability to express the fused katG-lacZ genes.  相似文献   

5.
The impact of arsenite [As(III)] on several levels of cellular metabolism and gene regulation was examined in Pseudomonas aeruginosa. P. aeruginosa isogenic mutants devoid of antioxidant enzymes or defective in various metabolic pathways, DNA repair systems, metal storage proteins, global regulators, or quorum sensing circuitry were examined for their sensitivity to As(III). Mutants lacking the As(III) translocator (ArsB), superoxide dismutase (SOD), catabolite repression control protein (Crc), or glutathione reductase (Gor) were more sensitive to As(III) than wild-type bacteria. The MICs of As(III) under aerobic conditions were 0.2, 0.3, 0.8, and 1.9 mM for arsB, sodA sodB, crc, and gor mutants, respectively, and were 1.5- to 13-fold less than the MIC for the wild-type strain. A two-dimensional gel/matrix-assisted laser desorption ionization-time of flight analysis of As(III)-treated wild-type bacteria showed significantly (>40-fold) increased levels of a heat shock protein (IbpA) and a putative allo-threonine aldolase (GlyI). Smaller increases (up to 3.1-fold) in expression were observed for acetyl-coenzyme A acetyltransferase (AtoB), a probable aldehyde dehydrogenase (KauB), ribosomal protein L25 (RplY), and the probable DNA-binding stress protein (PA0962). In contrast, decreased levels of a heme oxygenase (HemO/PigA) were found upon As(III) treatment. Isogenic mutants were successfully constructed for six of the eight genes encoding the aforementioned proteins. When treated with sublethal concentrations of As(III), each mutant revealed a marginal to significant lag period prior to resumption of apparent normal growth compared to that observed in the wild-type strain. Our results suggest that As(III) exposure results in an oxidative stress-like response in P. aeruginosa, although activities of classic oxidative stress enzymes are not increased. Instead, relief from As(III)-based oxidative stress is accomplished from the collective activities of ArsB, glutathione reductase, and the global regulator Crc. SOD appears to be involved, but its function may be in the protection of superoxide-sensitive sulfhydryl groups.  相似文献   

6.
7.
Glutathione is a ubiquitous thiol in eukaryotic cells, and its high intracellular ratio of reduced form (GSH) to oxidized form (GSSG) is largely maintained by glutathione reductase (GR) using NADPH as electron donor. glrA, a glutathione reductase encoding gene, was found and cloned from Acremonium chrysogenum by searching its genomic sequence based on similarity. Its deduced protein exhibits high similarity to GRs of other eukaryotic organisms. Disruption of glrA resulted in lack of GR activity and accumulation of a high level of GSSG in A. chrysogenum. Overexpression of glrA dramatically enhanced GR activity and the ratio of GSH/GSSG in this fungus. The spore germination and hyphal growth of glrA disruption mutant was strongly reduced in chemical defined medium. Meanwhile, the mutant was more sensitive to hydrogen peroxide than the wild-type strain. We found that the glrA mutant recovered normal germination and growth by adding exogenous methionine (Met). Exogenous Met also enhanced the antioxidative ability of both the mutant and wild-type strain. GSH determination indicated that the total GSH and ratio of GSH/GSSG in the mutant or wild-type strain were significantly increased when addition of Met into the medium. The glrA mutant grew poorly and could not produce detectable cephalosporin in the fermentation medium without Met. However, its growth and cephalosporin production was restored with addition of exogenous Met. These results indicate that glrA is required for the normal growth and protection against oxidative damage in A. chrysogenum, and its absence can be complemented by exogenous Met.  相似文献   

8.
The glutathione reductase gene, gor, was cloned from the plant pathogen Xanthomonas campestris pv. phaseoli. Its gene expression and enzyme characteristics were found to be different from those of previously studied homologues. Northern blot hybridization, promoter-lacZ fusion, and enzyme assay experiments revealed that its expression, unlike in Escherichia coli, is OxyR-independent and constitutive upon oxidative stress conditions. The deduced amino acid sequence shows a unique NADPH binding motif where the most highly conserved arginine residue, which is critical for NADPH binding, is replaced by glutamine. Interestingly, a search of the available Gor amino acid sequences from various sources, including other Xanthomonas species, revealed that this replacement is specific to the genus Xanthomonas. Recombinant Gor enzyme was purified and characterized, and was found to have a novel ability to use both, NADPH and NADH, as electron donor. A gor knockout mutant was constructed and shown to have increased expression of the organic peroxide-inducible regulator gene, ohrR.  相似文献   

9.
We report the sequencing of a 2,019-bp region of the Streptococcus mutans NG5 genome which contains a 1,428-bp open reading frame (ORF) whose putative translation product had 50% identity to the amino acid sequences of the nonphosphorylating, NADP-dependent glyceraldehyde-3-phosphate dehydrogenases (GAPN) from maize and pea. This ORF is located approximately 200 bp downstream of the ptsI gene coding for enzyme I of the phosphoenolpyruvate:sugar phosphotransferase transport system. Mutant BCH150, in which the putative gapN gene had been inactivated, lacked GAPN activity that was present in the wild-type strain, thus positively identifying the ORF as the S. mutans gapN gene. Another strain of S. mutans, DC10, which contains an insertionally inactivated ptsI gene, still possessed GAPN activity, as did S. salivarius ATCC 25975, which contains an insertion element between the ptsI and gapN genes. Since the wild-type S. mutans NG5 lacks both glucose-6-phosphate dehydrogenase and NADH:NADP oxidoreductase activities, the NADP-dependent glyceraldehyde-3-phosphate dehydrogenase is important as a means of generating NADPH for biosynthetic reactions.  相似文献   

10.
Genes encoding L-arginine biosynthetic and transport proteins have been shown in a number of pathogenic organisms to be important for metabolism within the host. In this study we describe the cloning of a gene (Rv0522) encoding an amino acid transporter from Mycobacterium bovis BCG and the effects of its deletion on L-arginine transport and metabolism. The Rv0522 gene of BCG was cloned from a cosmid library by using primers homologous to the rocE gene of Bacillus subtilis, a putative arginine transporter. A deletion mutant strain was constructed by homologous recombination with the Rv0522 gene interrupted by a selectable marker. The mutant strain was complemented with the wild-type gene in single copy. Transport analysis of these strains was conducted using (14)C-labeled substrates. Greatly reduced uptake of L-arginine and gamma-aminobutyric acid (GABA) but not of lysine, ornithine, proline, or alanine was observed in the mutant strain compared to the wild type, grown in Middlebrook 7H9 medium. However, when the strains were starved for 24 h or incubated in a minimal salts medium containing 20 mM arginine (in which even the parent strain does not grow), L-[(14)C]arginine uptake by the mutant but not the wild-type strain increased strongly. Exogenous L-arginine but not GABA, lysine, ornithine, or alanine was shown to be toxic at concentrations of 20 mM and above to wild-type cells growing in optimal carbon and nitrogen sources such as glycerol and ammonium. L-Arginine supplied in the form of dipeptides showed no toxicity at concentrations as high as 30 mM. Finally, the permease mutant strain showed no defect in survival in unactivated cultured murine macrophages compared with wild-type BCG.  相似文献   

11.
Furfural and 5-hydroxymethylfurfural (HMF) are inhibitors generated by lignocellulosic biomass pretreatment such as dilute acid hydrolysis that inhibit microbial growth and interfere with subsequent fermentation. It is possible to in situ detoxify these inhibitory compounds by aldehyde reductions using tolerant Saccharomyces cerevisiae. YOL151W (GRE2) is a commonly recognized up-regulated gene expressed under stress conditions that encodes reductase activities toward furfural and HMF using cofactor NADH. Applying a directed enzyme evolution approach, we altered the genetic code of GRE2 yielding two mutants with amino acid substitutions of Gln261 to Arg261 and Phe283 to Leu283; and Ile107 to Val107, Gln261 to Arg261, and Val285 to Asp285 for strain Y62-C11 and Y62-G6, respectively. Clones of these mutants showed faster growth rates and were able to establish viable cultures under 30 mM HMF challenges when compared with a wild type GRE2 clone when inoculated into synthetic medium containing this inhibitor. Compared with the wild type control, crude cell extracts of the two mutants showed 3- to 4-fold and 3- to 9-fold increased specific enzyme activity using NADH toward HMF and furfural reduction, respectively. While retaining its aldehyde reductase activities using the cofactor NADH, mutant Y62-G6 displayed significantly greater reductase activities using NADPH as the cofactor with 13- and 15-fold increase toward furfural and HMF, respectively, as measured by its partially purified protein. Using reverse engineering and site directed mutagenesis methods, we were able to confirm that the amino acid substitution of the Asp285 is responsible for the increased aldehyde reductase activities by utilizing the additional cofactor NADPH.  相似文献   

12.
The cloned Escherichia coli gor gene encoding the flavoprotein glutathione reductase was placed under the control of the tac promoter in the plasmid pKK223-3, allowing expression of glutathione reductase at levels approximately 40,000 times those of untransformed cells. This greatly facilitated purification of the enzyme. By directed mutagenesis of the gor gene, His-439 was changed to glutamine (H439Q) and alanine (H439A). The tyrosine residue at position 99 was changed to phenylalanine (Y99F), and in another experiment, the H439Q and Y99F mutations were united to form the double mutant Y99FH439Q. His-439 is thought to act in the catalytic mechanism as a proton donor/acceptor in the glutathione-binding pocket. The H439Q and H439A mutants retain approximately 1% and approximately 0.3%, respectively, of the catalytic activity of the wild-type enzyme. This reinforces our previous finding [Berry et al. (1989) Biochemistry 28, 1264-1269] that direct protonation and deprotonation of the histidine residue are not essential for the reaction to occur. The retention of catalytic activity by the H439A mutant demonstrates further that a side chain capable of hydrogen bonding to a water molecule, which might then act as proton donor, also is not essential at this position. Tyr-99 is a further possible proton donor in the glutathione-binding pocket, but the Y99F mutant was essentially fully active, and the Y99FH439Q double mutant also retained approximately 1% of the wild-type specific activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The causative agent of dental caries in humans, Streptococcus mutans, outcompetes other bacterial species in the oral cavity and causes disease by surviving acidic conditions in dental plaque. We have previously reported that the low-pH survival strategy of S. mutans includes the ability to induce a DNA repair system that appears to involve an enzyme with exonuclease functions (K. Hahn, R. C. Faustoferri, and R. G. Quivey, Jr., Mol. Microbiol 31:1489-1498, 1999). Here, we report overexpression of the S. mutans apurinic/apyrimidinic (AP) endonuclease, Smx, in Escherichia coli; initial characterization of its enzymatic activity; and analysis of an smx mutant strain of S. mutans. Insertional inactivation of the smx gene eliminates the low-pH-inducible exonuclease activity previously reported. In addition, loss of Smx activity renders the mutant strain sensitive to hydrogen peroxide treatment but relatively unaffected by acid-mediated damage or near-UV irradiation. The smx strain of S. mutans was highly sensitive to the combination of iron and hydrogen peroxide, indicating the likely production of hydroxyl radical by Fenton chemistry with concomitant formation of AP sites that are normally processed by the wild-type allele. Smx activity was sufficiently expressed in E. coli to protect an xth mutant strain from the effects of hydrogen peroxide treatment. The data indicate that S. mutans expresses an inducible, class II-like AP endonuclease, encoded by the smx gene, that exhibits exonucleolytic activity and is regulated as part of the acid-adaptive response of the organism. Smx is likely the primary, if not the sole, AP endonuclease induced during growth at low pH values.  相似文献   

14.
Phosphonoformic acid (PFA) and its congener phosphonoacetic acid (PAA) are inhibitors of viral replication whose mechanism of action appears to be the inhibition of viral DNA polymerase. These drugs inhibit mammalian DNA polymerase to a lesser extent. We sought to characterize the effects of phonoformic acid on mammalian cells by examining mutants of S49 cells (a mouse T-lymphoma line), which were selected by virtue of their resistance to phosphonoformic acid. The 11 mutant lines that were resistant to growth inhibition by 3 mM PFA had a range of growth rates, cell cycle distribution abnormalities, and resistance to the inhibitory effects of thymidine, acycloguanosine (acyclovir), aphidicolin, deoxyadenosine, and novobiocin. Most mutant lines had pools of ribonucleoside triphosphates and deoxyribonucleoside triphosphates similar to those of wild-type S49 cells. However, one line (PFA 3-9) had a greatly elevated dCTP pool. When this mutant line was further characterized, no apparent defect in DNA polymerase alpha activity was seen, but an increased ribonucleotide reductase activity, as assayed by CDP reduction in permeabilized cells, was observed. The CDP reductase activity in the PFA 3-9 cells decreased to wild-type control levels, and the CDP reductase activity of wild-type cells was also greatly reduced when PFA (2-3 mM) was added to permeabilized cells during the enzyme assay. These results demonstrate that PFA can directly inhibit ribonucleotide reductase activity in permeabilized cells. In addition, when PFA was added to exponentially growing cultures of either wild-type or PFA 3-9 mutant cells, the drug caused an arrest in S phase of the cell cycle and a decrease in all four deoxyribonucleotide pools, with the most dramatic decrease in the dCTP pools. The reduction in the dCTP pool level could be reversed by addition of exogenous deoxycytidine, but this reversed PFA toxicity only marginally. These observations suggest that PFA is an inhibitor of mammalian ribonucleotide reductase and that partial resistance to PFA can be effected by mutation to increased CDP reductase activity resulting in a large dCTP pool. This mutation results in less than twofold resistance to PFA, suggesting that other sites of inhibition coexist.  相似文献   

15.
16.
We have previously identified two distinct NADH oxidases corresponding to H(2)O(2)-forming oxidase (Nox-1) and H(2)O-forming oxidase (Nox-2) induced in Streptococcus mutans. Sequence analyses indicated a strong similarity between Nox-1 and AhpF, the flavoprotein component of Salmonella typhimurium alkyl hydroperoxide reductase; an open reading frame upstream of nox-1 also showed homology to AhpC, the direct peroxide-reducing component of S. typhimurium alkyl hydroperoxide reductase. To determine their physiological functions in S. mutans, we constructed knockout mutants of Nox-1, Nox-2, and/or the AhpC homologue; we verified that Nox-2 plays an important role in energy metabolism through the regeneration of NAD(+) but Nox-1 contributes negligibly. The Nox-2 mutant exhibited greatly reduced aerobic growth on mannitol, whereas there was no significant effect of aerobiosis on the growth on mannitol of the other strains or growth on glucose of any of the strains. Although the Nox-2 mutants grew well on glucose aerobically, the end products of glucose fermentation by the Nox-2 mutant were substantially shifted to higher ratios of lactic acid to acetic acid compared with wild-type cells. The resistance to cumene hydroperoxide of Escherichia coli TA4315 (ahpCF-defective mutant) transformed with pAN119 containing both nox-1 and ahpC genes was not only restored but enhanced relative to that of E. coli K-12 (parent strain), indicating a clear function for Nox-1 as part of an alkyl hydroperoxide reductase system in vivo in combination with AhpC. Surprisingly, the Nox-1 and/or AhpC deficiency had no effect on the sensitivity of S. mutans to cumene hydroperoxide and H(2)O(2), implying that the existence of some other antioxidant system(s) independent of Nox-1 in S. mutans compensates for the deficiency.  相似文献   

17.
Directed mutagenesis of the gor gene from Escherichia coli encoding the flavoprotein glutathione reductase was used to convert the two cysteine residues that comprise its redox-active disulphide bridge to alanine (C42A) and serine (C47S) residues. A double mutant (C42AH439A) was also created in which His-439, the proton donor/acceptor in the glutathione-binding site, was additionally converted into an alanine residue. The C42A and C47S mutants were both unable to catalyse the reduction of glutathione by NADPH. The C42A mutant retained the transhydrogenase activity of the wild-type enzyme, whereas the C47S mutant was also inhibited in this reaction. These results support the view that in the catalytic mechanism of E. coli glutathione reductase, the thiolate form of Cys-42 acts as a nucleophile to initiate disulphide exchange with enzyme-bound glutathione and that the thiolate form of Cys-47 generates an essential charge-transfer complex with enzyme-bound FAD. Titration of the C42A and C42AH439A mutants indicated that the imidazole side-chain of His-439 lowered the pKa of the charge-transfer thiol (Cys-47) from 7.7 to 5.7, enhancing its ability to act as an anion at neutral pH. Several important differences between these mutants of E. coli glutathione reductase and similar mutants (or chemically modified forms) of other members of the flavoprotein disulphide oxidoreductase family were noted, but these could be explained in terms of the different redox chemistries of the enzymes concerned.  相似文献   

18.
Smirnova  G. V.  Zakirova  O. N.  Oktyabr'skii  O. N. 《Microbiology》2001,70(5):512-518
Shifting the temperature from 30 to 45°C in an aerobic Escherichia coliculture inhibited the expression of the antioxidant genes katG, katE, sodA, and gor.The expression was evaluated by measuring -galactosidase activity in E. colistrains that contained fusions of the antioxidant gene promoters with the lacZoperon. Heat shock inhibited catalase and glutathione reductase, lowered the intracellular level of glutathione, and increased its extracellular level. It also suppressed the growth of mutants deficient in the katG-encoded catalase HPI, whereas the sensitivity of the wild-type andsodA sodBmutant cells to heat shock was almost the same. In the E. coliculture adapted to growth at 42°C, the content of both intracellular and extracellular glutathione was two times higher than in the culture grown at 30°C. The temperature-adapted cells grown aerobically at 42°C showed an increased ability to express the fused katG–lacZgenes.  相似文献   

19.
Abstract

Nitric oxide is known to be a messenger in animals and plants. Catalase may regulate the concentration of intracellular ?NO. In this study, yeast Saccharomyces cerevisiae cells were treated with 1–20 mM S-nitrosoglutathione (GSNO), a nitric oxide donor, which decreased yeast survival in a concentration-dependent manner. In the wild-type strain (YPH250), 20 mM GSNO reduced survival by 32%. The strain defective in peroxisomal catalase behaved like the wild-type strain, while a mutant defective in cytosolic catalase showed 10% lower survival. Surprisingly, survival of the double catalase mutant was significantly higher than that of the other strains used. Incubation of yeast with GSNO increased the activities of both superoxide dismutase (SOD) and catalase. Pre-incubation with cycloheximide prevented the activation of catalase, but not SOD. The concentrations of oxidized glutathione increased in the wild-type strain, as well as in the mutants defective in peroxisomal catalase and an acatalasaemic strain; it failed to do this in the mutant defective in cytosolic catalase. The activity of aconitase was reduced after GSNO treatment in all strains studied, except for the mutant defective in peroxisomal catalase. The content of protein carbonyls and activities of glutathione reductase and S-nitrosoglutathione reductase were unchanged following GSNO treatment. The increase in catalase activity due to incubation with GSNO was not found in a strain defective in Yap1p, a master regulator of yeast adaptive response to oxidative stress. The obtained data demonstrate that exposure of yeast cells to the ?NO-donor S-nitrosoglutathione induced mild oxidative/nitrosative stress and Yap1p may co-ordinate the up-regulation of antioxidant enzymes under these conditions.  相似文献   

20.
In order to identify amino acids involved in binding the co-substrate glutathione to the human glutathione S-transferase (GST) pi enzyme, we assembled three criteria to implicate amino acids whose role in binding and catalysis could be tested. Presence of a residue in the highly conserved exon 4 of the GST gene, positional conservation of a residue in 12 glutathione S-transferase amino acid sequences, and results from published chemical modification studies were used to implicate 14 residues. A bacterial expression vector (pUC120 pi), which enabled abundant production (2-26% of soluble Escherichia coli protein) of wild-type or mutant GST pi, was constructed, and, following nonconservative substitution mutation of the 14 implicated residues, five mutants (R13S, D57K, Q64R, I68Y, L72F) showed a greater than 95% decrease in specific activity. A quantitative assay was developed which rapidly measured the ability of wild-type or mutant glutathione S-transferase to bind to glutathione-agarose. Using this assay, each of the five loss of function mutants showed a greater than 20-fold decrease in binding glutathione, an observation consistent with a recent crystal structure analysis showing that several of these residues help to form the glutathione-binding cleft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号