首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The frequency of chromosome aberrations was studied in human lymphocytes, with different duration of the mitotic cycle (from 48 to 73 h), exposed to gamma-quanta 2 h before fixation (i. e. at the G2 stage). In all cases both the types and the frequencies of aberrations were the same; this was an argument against the assumption about the existence of populations varying by radiosensitivity of chromosomes.  相似文献   

4.
5.
6.
Exponentially growing L5178Y cells in suspension culture were separated according to their position in the cell cycle on the basis of their volume with a velocity sedimentation method in which a linear and continuous ficoll gradient was used. Highly purified populations of G1 and S cells were obtained, containing about 90% G1 phase cells and 80% S phase cells. The method is rapid and a larger number of cells can be easily processed with no loss of viability.  相似文献   

7.
Effect of isoprenaline on cells in different phases of the mitotic cycle   总被引:4,自引:0,他引:4  
The effects of isoprenaline on parotid acinar cells in different phases of the mitotic cycle have been investigated. Cells in mitosis at the time of drug administration are not depleted of secretory granules whilst those in other phases are. The drug causes temporary blocks both in metaphase and in the G2 phase. The blocks are prolonged by repeated injections of the drug. Cells continue to undergo DNA synthesis during the period of secretion following the drug. The mitotic delay appears to be specific for the parotid and submaxillary glands.  相似文献   

8.
Summary The presence of a prophase nucleus inHaemanthus endosperm happens to trigger the break down of the nuclear envelope in any interphase nucleus, located in its close proximity. Besides, chromosomes in the interphase nucleus start condensing gradually for the initial breaking point which is the nearest point to the prophase. The observation suggest the diffusion of an inducer, whose progression has been recorded to occur at a rate of 1.1 m/min.  相似文献   

9.
By use of pulse-chase exposure of dissociated cells of rat fetal spinal cord or brain to [3H]thymidine (TdR) and unlabeled TdR it has been shown that oligodendroglial precursors which do not express galactocerebroside (GalC) divide first and later differentiate to express GalC. The rate of proliferation of more mature GalC+ oligodendrocytes is considerably lower than that of their GalC- precursors. It has been found that oligodendrocyte precursor cells are extremely sensitive to [3H]TdR irradiation. Exposure to as little as 0.03 microCi/ml for 24 hr proved to be harmful, particularly during a critical period before birth. This critical period corresponded to the peak of division of oligodendrocyte precursor cells.  相似文献   

10.
11.
Summary Root apical meristems are composed of two zones in which either formative or proliferative cell divisions occur. Within the formative zone, autoreproductive initial cells (a-cells) occupy distinctive locations. By means of graph-L-systems, the behavior of one such type of a-cells has been investigated, with particular reference to root caps within the developing primordia of lateral roots ofLycopersicon esculentum cultivated in vitro. Here, the a-cells constitute the protoderm initials, cells which are found also in the root cap of many angiosperm species. A set of cuboidal (i.e., six-sided) acells develops early in the ontogeny of a lateral-root primordium. Then, according to both anatomical observations and theoretical simulations obtained by the application of graph-L-systems, sequential production of descendents from each a-cell leads to the formation of a new autoreproductive cell (a), a cap columella initial (c), and two mother cells (e and f) whose respective descendents differentiate as root epidermis and cap flank cells. In this graph-L-system, there is specification of the location of sister cells with respect to the three orthogonal directions of a cuboidal. In the early stage of root cap formation, only a few rounds of these formative cell divisions by each a-cell and its four types of descendents are required to provide the basic set of cells necessary for full cap development. After the lateral root emerges from the parent root, there may be a temporary cessation of the formative divisions of the a-cells which give rise to columella initials. Columella production is then supported entirely by its own independent set of autoreproductive c-initials. At the same time, division of the autoreproductive protoderm initial cell is directed towards maintaining the cap flank and the epidermal cell files. The regulation of the types of formative division by the a-cell may be represented by means of a division counter which may be specific for a given species.Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday  相似文献   

12.
13.
The centrosome cycle in the mitotic cycle of sea urchin eggs   总被引:6,自引:0,他引:6  
When sea urchin eggs entering mitosis are exposed to an appropriate concentration of mercaptoethanol, the chromosome cycle is restrained while the centrosome cycle advances. The two poles of the mitotic apparatus separate into four poles, while the chromosomes remain in their metaphase arrangements until released by the removal of the mercaptoethanol. We follow the centrosomes through the stages of the generation of two poles by each original pole. In electron microscopic studies, the osmiophilic component of the centrosomes serves as an indicator of their changing forms as each pole generates two poles. In light microscopic studies, including observations of birefringence, the shapes of the polar ends of the spindles are taken as indicators of the shapes of the centrosomes. The successive stages of the centrosome cycle are (1) compact spherical centrosomes at the time of formation of the mitotic apparatus; (2) expansion and flattening of the centrosomes, leading to (3) formation of thin flat plates, perpendicular to the spindle axis. Corresponding to the extended flat shape of the centrosomes, the spindle poles are flat; microtubules 'point' to the centrosomal plate and not the centrioles. The centrioles are separated in the flattening of the centrosomes. (4) The flat plate divides into two and each of the two halves becomes more compact, defining two separate poles. Our findings resurrect and update Boveri's [5] observations and interpretations of the centrosome. Centrosomes have shapes. The shapes may be imparted to the microtubular structures that they generate. The formation of two separate centrosomes from one, in the formation of mitotic poles, is describable as a sequence of changes in shape.  相似文献   

14.
15.
G. Hillmann  A. Ruthmann 《Planta》1982,155(2):124-132
After 5 h in 10-3M vinblastine the most obvious effects upon Vicia faba L. cells are seen in the spindle apparatus. These include the microtubules themselves as indicated by c-type metaphases and the pole regions of otherwise intact spindles, leading to multipolar anaphases and to telophases with more than two daughter nuclei. Vesicle transport may be undisturbed and new cell walls can be formed, although cases of disturbed cell plate and cell wall formation were noted occasionally, accompanied by myelinizations in phragmosomes. After 24 h in the same concentration of vinblastine, divisions are no longer observed and the plasma membranes are severely affected. They show extensive myelinizations, accumulations of lipids and dehiscence from the cell walls which are frequently thickened and irregularly formed. Of the other cellular membranes, the nuclear envelope and, more frequently, the tonoplast may be affected. Electron-dense deposits appear in the vacuoles. Comparable, though less severe, changes including multipolar anaphases and myelinizations result from treatment with lumicolchicine, but not with colchicine. Vinblastine leads to the appearance of filament bundles both in cytoplasm and karyoplasm, lumicolchicine to morphologically identical filaments in the cytoplasm alone. The nature of these filaments is unknown.Abbreviation VLB vincaleukoblastine  相似文献   

16.
Dobrachaev AE  Ivanov VB 《Ontogenez》2001,32(4):252-262
Variations in the length of mitotic and interphase cells were analyzed in various tissues of wheat roots and in the cortex of maize roots. Reliable differences were shown in the length of mitotic cells in individual files-clones of cells of the same tissue. The mean lengths of dividing cells in different roots differed to a lesser extent than those of different files in the same tissue of one root. Within the file, the length of sister simultaneously dividing cells differed the least, while the difference of lengths of neighbor simultaneously dividing nonsister cells was bigger. The mean length of interphase cells in any file was always less than that of mitotic cells by a factor of 1.45. This ratio was almost invariable for files and tissues in both plants we studied and corresponded to that of an exponentially growing cell population. In addition, a very small number of cells were found (less than 1%) in meristems, which are longer than the mitotic cells. The length of these cells exceeded those of mitotic cells by less than twice. The origin of such cells is discussed. The length of mitotic cells near the quiescent center is more variable than in the middle of the meristem in the cortex of both plants. In the meristem basal part, the mitotic cells were no longer than those in the middle of the meristem but there were no small dividing cells. In the wheat epidermis, the cells are differentiated into trichoblasts and atrichoblasts and, therefore, the length of dividing cells is highly variable. The cell length is essential for their transition to mitosis for all studied proliferating meristem cells.  相似文献   

17.
18.
T V Kondrashova  N V Luchnik 《Genetika》1990,26(10):1783-1790
Formation of single-stranded DNA regions was investigated during the presynthetic stage of human lymphocyte cell cycle. Two peaks of single-stranded region production were found in about the middle and near the end of the G1 stage. Both the peaks appeared some hours earlier in gamma-irradiated cells than in control. Experiments showed that the periods of the peak formation coincided with the terms when time-effect dependence for gamma-induced chromosomal aberrations changed its character. The interpretation of the results supposes existence of inherent for the G1 stage process of genetic material correction.  相似文献   

19.
Mitotically dividing cells of Secale cereale, Hordeum vulgare and Vicia faba were studied by indirect immunofluorescence using an antibody recognizing phosphorylated histone H3. The study revealed the following features: (i) the H3 phosphorylation starts at prophase and ends at telophase in the pericentromeric chromatin, is associated with the condensation of mitotic chromosomes and is independent of the distribution of late replicating heterochromatin. (ii) Compared with other chromosome regions, the pericentromeric chromatin is histone H3 hyperphos- phorylated. (iii) The study of a semi-dicentric chromo- some revealed that only at intact centromeres is the chromatin hyperphosphorylated at H3.  相似文献   

20.
The plant cell cycle   总被引:1,自引:0,他引:1  
The first aim of this paper is to review recent progress in identifying genes in plants homologous to cell division cycle (cdc) genes of fission yeast. In the latter, cdc genes are well-characterised. Arguably, most is known about cdc2 which encodes a 34 kDa protein kinase (p34cdc2) that functions at the G2-M and G1-S transition points of the cell cycle. At G2-M, the p34cdc2 protein kinase is regulated by a number of gene products that function in independent regulatory pathways. The cdc2 kinase is switched on by a phosphatase encoded by cdc25, and switched off by a protein kinase encoded by weel. p34 Must also bind with a cyclin protein to form maturation promoting factor before exhibiting protein kinase activity. In plants, homologues to p34cdc2 have been identified in pea, wheat, Arabidopsis, alfalfa, maize and Chlamydomonas. They all exhibit the PSTAIRE motif, an absolutely conserved amino acid sequence in all functional homologues sequenced so far. As in animals, some plant species contain more than one cdc2 protein kinase gene. but in contrast to animals where one functions at G2-M and the other (CDK2 in humans and Egl in Xenopus) at G1-S, it is still unclear whether there are functional differences between the plant p34cdc2 protein kinases. Again, whereas in animals cyclins are well characterised on the basis of sequence analysis, into class A, class B (G2-M) and CLN (G1 cyclins), cyclins isolated from several plant species cannot be so clearly characterised. The differences between plant and animal homologues to p34cdc2 and cyclins raises the possibility that some of the regulatory controls of the plant genes may be different from those of their animal counterparts. The second aim of the paper is to review how planes of cell division and cell size are regulated at the molecular level. We focus on reports showing that p34cdc2 binds to the preprophase band (ppb) in late G2 of the cell cycle. The binding of p34cdc2 to ppbs may be important in regulating changes in directional growth but, more importantly, there is a requirement to understand what controls the positioning of ppbs. Thus, we highlight work resolving proteins such as the microtubule associated proteins (MAPs) and those mitogen activated protein kinases (MAP kinases), which act on, or bind to, mitotic microtubules. Plant homologues to MAP kinases have been identified in alfalfa. Finally, some consideration is given to cell size at division and how alterations in cell size can alter plant development. Transgenic tobacco plants expressing the fission yeast gene, cdc25, exhibited various perturbations of development and a reduced cell size at division. Hence, cdc25 affected the cell cycle (and as a consequence, cell size at division) and cdc25 expression was correlated with various alterations to development including precocious flowering and altered floral morphogenesis. Our view is that the cell cycle is a growth cycle in which a cell achieves an optimal size for division and that this size control has an important bearing on differentiation and development. Understanding how cell size is controlled, and how plant cdc genes are regulated, will be essential keys to ‘the cell cycle locks’, which when ‘opened’, will provide further clues about how the cell cycle is linked to plant development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号